Preparation and characterization of microcellular foamed thermoplastic polyamide elastomer composite consisting of EVA/TPAE1012

Wiley - Tập 138 Số 37 - 2021
Guotao Huang1, Suyuan Li1, Yucai Li2, Xinlei Wu2, Xinxing Feng3, Yuan Gui1, Jianping Deng1, Cao Wang2, Kai Pan1
1College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
2De Zhou Xin Hua Run Technology Co., LTD, Dezhou, China
3Institute of Quartermaster Engineering and Technology of System Engineering Research Institute, Academy of Military Sciences PLA, Beijing, China

Tóm tắt

AbstractThermoplastic polyamide elastomer (TPAE) is a kind of high‐performance elastomers prepared from nylon hard segments and polyether or polyester soft segments. The hard segments endow TPAE with excellent mechanical properties, while the soft segments provide the desired elasticity. Therefore, the development of TPAE as a high‐performance foam material has broad application prospects. In this work, ethylene‐vinyl acetate copolymer/polyamide‐1012 elastomer (EVA/TPAE1012) composite materials with different compositions were prepared, using ethylene‐vinyl acetate /maleic anhydride graft copolymer (EVA‐g‐MAH) as compatibilizer. Then, EVA/TPAE foamed materials were fabricated by chemical foaming method and batch foaming process, with azodicarbonamide as blowing agent. The resulting composite foams were tested in terms of density, cell properties hardness, resilience, compression recovery, and mechanical strength. The EVA/TPAE1012 foam has a low density (0.14 g cm−3), small cell size (approximately 62.1 μm), and a high cell density (3.08 × 107 cells cm−3). Compared with pure EVA foam, the composite foam not only has an increase in specific strength, resilience and tearing strength, but also has good toughness, which greatly improves the resulting foams' expansion ratio and elongation at break.

Từ khóa


Tài liệu tham khảo

10.1121/1.4708223

10.1002/app.27030

10.1177/0021955X14524082

10.1051/matecconf/201825101017

10.1088/1757-899X/244/1/012009

10.1021/ma971811z

10.1016/j.bej.2008.11.002

10.1002/pen.23509

10.1002/app.37826

Zhai J., 2018, Polym. Mater.: Sci. Eng., 34, 129

10.1016/S0266-3538(03)00272-0

10.1002/app.38104

10.1177/0021955X11404833

10.7569/JRM.2015.634129

10.1002/jbm.820231406

10.1016/j.jbiomech.2003.12.022

10.1021/ef401376m

Ping Z., 2016, Polym. Bull., 9, 171

10.1002/pc.25543

10.1002/pc.22734

Li C., 2013, Polym. Mater.: Sci. Eng., 29, 28

Kong W., 2015, J. Macromol. Sci. Part D Rev. Polym. Process., 55, 1

10.1080/00222348.2013.857536

10.1007/s13233-017-5094-9

10.1016/j.memsci.2013.03.001

10.1007/s10853-010-4328-4

10.1002/app.48687

10.1007/s10965-017-1326-0

10.1016/j.eurpolymj.2018.04.002

10.1016/j.polymer.2017.02.088

10.1016/j.jmapro.2019.09.022

10.1007/s10965-019-1913-3

10.1002/vnl.10027

10.1177/0021955X14566210

10.1016/j.polymer.2009.11.063

10.1002/pen.24598

10.1002/pamm.201110174

10.1007/s10118-016-1806-4

10.1007/s10904-020-01608-4

10.5004/dwt.2020.25678

10.5004/dwt.2017.20293

10.1016/j.chemosphere.2020.128999

10.1002/app.43424