Preparation and Evaluation of a Xanthan Gum–Containing Linezolid Ophthalmic Solution for Topical Treatment of Experimental Bacterial Keratitis

Springer Science and Business Media LLC - Tập 38 - Trang 347-359 - 2021
Fan Zhang1, Dongmei Jia2, Qiqi Li1, Mengmeng Zhang2, Hongyun Liu2, Xianggen Wu1
1Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
2Department of Pathology, Qingdao Municipal Hospital, Qingdao, China

Tóm tắt

To formulate a xanthan gum–containing linezolid ophthalmic solution (LZD-XG) as a new antibiotic treatment against ocular bacterial infection. LZD-XG was prepared and evaluated for its in vitro/in vivo ocular tolerance, in vitro/in vivo antibacterial activity, and in vivo ocular penetration. The optimized LZD-XG exhibited good in vitro/in vivo eye tolerance. A prolonged ocular surface residence time of LZD-XG was observed after topical instillation, and the ocular permeation was significantly better for LZD-XG than fora linezolid (LZD) ophthalmic solution. The in vitro antimicrobial activity was significantly better with LZD-XG than with LZD. In vivo evaluation also confirmed a strong therapeutic treatment effect of LZD-XG, as it significantly improved the clinical symptoms, ameliorated the damage of Staphylococcus aureus to ocular tissues, lowered the colony forming unit counts in the cornea, and decreased the myeloperoxidase activity in the cornea. LZD-XG was deemed a viable ophthalmic solution against ocular bacterial infection due to its excellent in vitro and in vivo characterizations.

Tài liệu tham khảo

Getahun E, Gelaw B, Assefa A, Assefa Y, Amsalu A. Bacterial pathogens associated with external ocular infections alongside eminent proportion of multidrug resistant isolates at the University of Gondar Hospital, Northwest Ethiopia. BMC Ophthalmol. 2017;17(1):151. O'Callaghan RJ. The pathogenesis of Staphylococcus aureus eye infections. Pathogens. 2018;7(1). Asbell PA, Sanfilippo CM, Sahm DF, HH DC. Trends in Antibiotic Resistance Among Ocular Microorganisms in the United States From 2009 to 2018. JAMA Ophthalmol. 2020. Liu T, Luo J, Bi G, Du Z, Kong J, Chen Y. Antibacterial synergy between linezolid and baicalein against methicillin-resistant Staphylococcus aureus biofilm in vivo. Microb Pathog. 2020;147:104411. Akova Budak B, Baykara M, Kivanc SA, Yilmaz H, Cicek S. Comparing the ocular surface effects of topical vancomycin and linezolid for treating bacterial keratitis. Cutan Ocul Toxicol. 2016;35(2):126–30. Farooq AV, Hou JH, Jassim S, Haq Z, Tu EY, de la Cruz J, et al. Biofilm formation on bandage contact lenses worn by patients with the boston type 1 keratoprosthesis: a pilot comparison study of prophylactic topical vancomycin 15 mg/mL and linezolid 0.2. Eye Contact Lens. 2018;44(Suppl 1):S106–S9. Krzysztofiak A, Bozzola E, Lancella L, Boccuzzi E, Vittucci AC, Marchesi A, et al. Linezolid therapy in a perinatal late-onset Staphylococcus aureus sepsis complicated by spondylodiscitis and endophthalmitis. Infez Med. 2015;23(4):353–7. Pilania RK, Arora A, Agarwal A, Jindal AK, Aggarwal K, Krishnan G, et al. Linezolid-induced mitochondrial toxicity presenting as retinal nerve fiber layer microcysts and optic and peripheral neuropathy in a patient with chronic granulomatous disease. Retin Cases Brief Rep. 2018. Huber M, Stahlmann R. The eye as target of adverse ocular drug reactions. Focus on systemic antiinfective therapy. Med Monatsschr Pharm. 2012;35(12):436–42 quiz 43-4. Park DH, Park TK, Ohn YH, Park JS, Chang JH. Linezolid induced retinopathy. Doc Ophthalmol. 2015;131(3):237–44. Andres-Guerrero V, Vicario-de-la-Torre M, Molina-Martinez IT, Benitez-del-Castillo JM, Garcia-Feijoo J, Herrero-Vanrell R. Comparison of the in vitro tolerance and in vivo efficacy of traditional timolol maleate eye drops versus new formulations with bioadhesive polymers. Invest Ophthalmol Vis Sci. 2011;52(6):3548–56. Igarashi T, Fujimoto C, Suzuki H, Ono M, Iijima O, Takahashi H, et al. Short-time exposure of hyperosmolarity triggers interleukin-6 expression in corneal epithelial cells. Cornea. 2014;33(12):1342–7. Wu M, Wang S, Wang Y, Zhang F, Shao T. Targeted delivery of mitomycin C-loaded and LDL-conjugated mesoporous silica nanoparticles for inhibiting the proliferation of pterygium subconjunctival fibroblasts. Exp Eye Res. 2020;108124. Yousry C, Zikry PM, Salem HM, Basalious EB, El-Gazayerly ON. Integrated nanovesicular/self-nanoemulsifying system (INV/SNES) for enhanced dual ocular drug delivery: statistical optimization, in vitro and in vivo evaluation. Drug Deliv Transl Res. 2020;10(3):801–14. Zhang F, Li R, Yan M, Li Q, Li Y, Wu X. Ultra-small nanocomplexes based on polyvinylpyrrolidone K-17PF: a potential nanoplatform for the ocular delivery of kaempferol. Eur J Pharm Sci. 2020;147:105289. Song K, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro-in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf B Biointerfaces. 2020;194:111157. Lou J, Hu W, Tian R, Zhang H, Jia Y, Zhang J, et al. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomedicine. 2014;9:2517–25. Blanco AR, La Terra MS, Babini G, Garbisa S, Enea V, Rusciano D. (−)Epigallocatechin-3-gallate inhibits gelatinase activity of some bacterial isolates from ocular infection, and limits their invasion through gelatine. Biochim Biophys Acta. 2003;1620(1–3):273–81. Ye Y, He J, Qiao Y, Qi Y, Zhang H, Santos HA, et al. Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis. Theranostics. 2020;10(19):8541–57. Luo LJ, Lin TY, Yao CH, Kuo PY, Matsusaki M, Harroun SG, et al. Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. J Colloid Interface Sci. 2019;536:112–26. Lu HD, Pearson E, Ristroph KD, Duncan GA, Ensign LM, Suk JS, et al. Pseudomonas aeruginosa pyocyanin production reduced by quorum-sensing inhibiting nanocarriers. Int J Pharm. 2018;544(1):75–82. Saleh M, Jehl F, Dory A, Lefevre S, Prevost G, Gaucher D, et al. Ocular penetration of topically applied linezolid in a rabbit model. J Cataract Refract Surg. 2010;36(3):488–92. Tu EY, Jain S. Topical linezolid 0.2% for the treatment of vancomycin-resistant or vancomycin-intolerant gram-positive bacterial keratitis. Am J Ophthalmol. 2013;155(6):1095–8 e1. Wei Y, Li C, Zhu Q, Zhang X, Guan J, Mao S. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: in vitro drug release and in vivo tissue distribution. Int J Pharm. 2020;578:119184. Ceulemans J, Vinckier I, Ludwig A. The use of xanthan gum in an ophthalmic liquid dosage form: rheological characterization of the interaction with mucin. J Pharm Sci. 2002;91(4):1117–27. Amico C, Tornetta T, Scifo C, Blanco AR. Antioxidant effect of 0.2% xanthan gum in ocular surface corneal epithelial cells. Curr Eye Res. 2015;40(1):72–6. Jian HJ, Wu RS, Lin TY, Li YJ, Lin HJ, Harroun SG, et al. Super-cationic carbon quantum dots synthesized from Spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 2017;11(7):6703–16. Kocaturk T, Gencgonul A, Balica F, Ozbagcivan M, Cakmak H. Combined eye gel containing sodium hyaluronate and xanthan gum for the treatment of the corneal epithelial defect after pterygium surgery. Clin Ophthalmol. 2015;9:1463–6. Perez-Balbuena AL, Ochoa-Tabares JC, Belalcazar-Rey S, Urzua-Salinas C, Saucedo-Rodriguez LR, Velasco-Ramos R, et al. Efficacy of a fixed combination of 0.09% xanthan gum/0.1% chondroitin sulfate preservative free vs polyethylene glycol/propylene glycol in subjects with dry eye disease: a multicenter randomized controlled trial. BMC Ophthalmol. 2016;16(1):164. Llamas-Moreno JF, Baiza-Duran LM, Saucedo-Rodriguez LR, la OJ A-D. Efficacy and safety of chondroitin sulfate/xanthan gum versus polyethylene glycol/propylene glycol/hydroxypropyl guar in patients with dry eye. Clin Ophthalmol. 2013;7:995–9. Oum BS, Kim NM, Lee JS, Park YM. Effects of fluoroquinolone eye solutions without preservatives on human corneal epithelial cells in vitro. Ophthalmic Res. 2014;51(4):216–23. Miyake T, Ito N, Tajima K, Goto H, Furukawa T. Comparison of moxifloxacin and levofloxacin in an epithelial disorder model using cultured rabbit corneal epithelial cell sheets. Graefes Arch Clin Exp Ophthalmol. 2012;250(7):1035–41. Fukuda M, Sasaki H. Effects of fluoroquinolone-based antibacterial ophthalmic solutions on corneal wound healing. J Ocul Pharmacol Ther. 2015;31(9):536–40. Saleh M, Lefevre S, Acar N, Bourcier T, Marcellin L, Prevost G, et al. Efficacy of intravitreal administrations of linezolid in an experimental model of S. aureus-related endophthalmitis. Invest Ophthalmol Vis Sci. 2012;53(8):4832–41. Jian Y, Lv H, Liu J, Huang Q, Liu Y, Liu Q, et al. Dynamic changes of Staphylococcus aureus susceptibility to Vancomycin, Teicoplanin, and linezolid in a central teaching Hospital in Shanghai, China, 2008-2018. Front Microbiol. 2020;11:908. Chowhan A, Giri TK. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol. 2020;150:559–72. Wu XG, Xin M, Chen H, Yang LN, Jiang HR. Novel mucoadhesive polysaccharide isolated from Bletilla striata improves the intraocular penetration and efficacy of levofloxacin in the topical treatment of experimental bacterial keratitis. J Pharm Pharmacol. 2010;62(9):1152–7. Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in ocular drug delivery. Pharmaceutics. 2019;12(1). Pahuja P, Arora S, Pawar P. Ocular drug delivery system: a reference to natural polymers. Expert Opin Drug Deliv. 2012;9(7):837–61. Kumar A, Singh PK, Zhang K, Kumar A. Toll-like receptor 2 (TLR2) engages endoplasmic reticulum stress sensor IRE1alpha to regulate retinal innate responses in Staphylococcus aureus endophthalmitis. FASEB J. 2020;34:13826–38.