Bảng nomogram lâm sàng và hình ảnh học trước phẫu thuật dự đoán xâm lấn vi mạch trong ung thư tế bào gan sử dụng $$^{18}$$F-FDG PET/CT

Yutao Wang1, Shuying Luo2, Gehui Jin3, Randi Fu2, Zhongfei Yu4, Jian Zhang4
1The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315020, China
2Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang Province, 315211, China
3Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, China
4Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Building 8, 406 Guilin Road, Xuhui District, Shanghai, 201103, China

Tóm tắt

Abstract Mục đích

Mục đích của nghiên cứu này là phát triển một bảng nomogram lâm sàng-hình ảnh học bằng cách kết hợp điểm hình ảnh học (radiomics score) và các yếu tố dự đoán lâm sàng để dự đoán trước phẫu thuật xâm lấn vi mạch trong ung thư tế bào gan.

Phương pháp

Tổng cộng có 97 bệnh nhân HCC được thu thập hồi cứu từ Trung tâm Chẩn đoán Hình ảnh Y tế Toàn cầu Thượng Hải và Bệnh viện Changhai thuộc Đại học Y tế Quân sự Thứ hai. 909 lát cắt CT và 909 lát cắt PET từ 97 bệnh nhân HCC được chia thành nhóm huấn luyện (N = 637) và nhóm xác thực (N = 272). Các đặc điểm hình ảnh học được trích xuất từ mỗi lát cắt CT hoặc PET, và việc chọn lựa đặc điểm được thực hiện bằng việc hồi quy thụt giảm tuyệt đối tối thiểu và cũng tạo ra điểm hình ảnh học. Bảng nomogram lâm sàng-hình ảnh học được thiết lập bằng cách tích hợp điểm hình ảnh học và các yếu tố dự đoán lâm sàng, và hiệu suất của các mô hình được đánh giá dựa trên khả năng phân biệt, khả năng hiệu chỉnh và tính hữu ích lâm sàng của chúng.

Từ khóa

#xâm lấn vi mạch #ung thư tế bào gan #bảng nomogram #hình ảnh học #điểm hình ảnh học.

Tài liệu tham khảo

Marrero JA, Welling T. Modern diagnosis and management of hepatocellular carcinoma. Clin Liver Disease. 2009;13(2):233–47. https://doi.org/10.1016/j.cld.2009.02.007.

Zimmerman MA, Ghobrial RM, Tong MJ, Hiatt JR, Cameron AM, Hong J, Busuttil RW. Recurrence of hepatocellular carcinoma following liver transplantation: a review of preoperative and postoperative prognostic indicators. Arch Surg. 2008;143(2):182–8. https://doi.org/10.1001/archsurg.2007.39.

Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014;63(5):844–55. https://doi.org/10.1136/gutjnl-2013-306627.

Llovet JM, Schwartz M, Mazzaferro V. Resection and liver transplantation for hepatocellular carcinoma. Semin Liver Disease. 2005;25:181–200. https://doi.org/10.1055/s-2005-871198.

Miyata R, Tanimoto A, Wakabayashi G, Shimazu M, Nakatsuka S, Mukai M, Kitajima M. Accuracy of preoperative prediction of microinvasion of portal vein in hepatocellular carcinoma using superparamagnetic iron oxide-enhanced magnetic resonance imaging and computed tomography during hepatic angiography. J Gastroenterol. 2006;41(10):987–95. https://doi.org/10.1007/s00535-006-1890-2.

Roayaie S, Blume IN, Thung SN, Guido M, Fiel M-I, Hiotis S, Labow DM, Llovet JM, Schwartz ME. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma. Gastroenterology. 2009;137(3):850–5. https://doi.org/10.1053/j.gastro.2009.06.003.

Lim K-C, Chow PK-H, Allen JC, Chia G-S, Lim M, Cheow P-C, Chung AY, Ooi LL, Tan S-B. Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the milan criteria. Ann Surg. 2011;254(1):108–13. https://doi.org/10.1097/SLA.0b013e31821ad884.

Jonas S, Bechstein WO, Steinmüller T, Herrmann M, Radke C, Berg T, Settmacher U, Neuhaus P. Vascular invasion and histopathologic grading determine outcome after liver transplantation for hepatocellular carcinoma in cirrhosis. Hepatology. 2001;33(5):1080–6. https://doi.org/10.1053/jhep.2001.23561.

Hirokawa F, Hayashi M, Miyamoto Y, Asakuma M, Shimizu T, Komeda K, Inoue Y, Uchiyama K. Outcomes and predictors of microvascular invasion of solitary hepatocellular carcinoma. Hepatol Res. 2014;44(8):846–53. https://doi.org/10.1111/hepr.12196.

Choi YS, Rhee H, Choi J-Y, Chung YE, Park YN, Kim KW, Kim M-J. Histological characteristics of small hepatocellular carcinomas showing atypical enhancement patterns on gadoxetic acid-enhanced mr imaging. J Magn Reson Imaging. 2013;37(6):1384–91. https://doi.org/10.1002/jmri.23940.

Sterling RK, Wright EC, Morgan TR, Seeff LB, Hoefs JC, DiBisceglie AM, Dienstag JL, Lok AS, Group HCT, et al. Frequency of elevated hepatocellular carcinoma (HCC) biomarkers in patients with advanced hepatitis C. Am J Gastroenterol. 2012;107(1):64. https://doi.org/10.1038/ajg.2011.312.

Hyun SH, Eo JS, Song B-I, Lee JW, Na SJ, Hong IK, Oh JK, Chung YA, Kim T-S, Yun M. Preoperative prediction of microvascular invasion of hepatocellular carcinoma using 18F-FDG PET/CT: a multicenter retrospective cohort study. Eur J Nucl Med Mol Imaging. 2018;45(5):720–6. https://doi.org/10.1007/s00259-017-3880-4.

Lim C, Salloum C, Chalaye J, Lahat E, Costentin CE, Osseis M, Itti E, Feray C, Azoulay D. 18F-FDG PET/CT predicts microvascular invasion and early recurrence after liver resection for hepatocellular carcinoma: a prospective observational study. HPB. 2019;21(6):739–47. https://doi.org/10.1016/j.hpb.2018.10.007.

Eo JS, Paeng JC, Lee DS. Nuclear imaging for functional evaluation and theragnosis in liver malignancy and transplantation. World J Gastroenterol WJG. 2014;20(18):5375. https://doi.org/10.3748/wjg.v20.i18.5375.

Lee JW, Paeng JC, Kang KW, Kwon HW, Suh K-S, Chung J-K, Lee MC, Lee DS. Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J Nucl Med. 2009;50(5):682–7. https://doi.org/10.2967/jnumed.108.060574.

Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6. https://doi.org/10.1016/j.ejca.2011.11.036.

Hu H-T, Wang Z, Huang X-W, Chen S-L, Zheng X, Ruan S-M, Xie X-Y, Lu M-D, Yu J, Tian J, et al. Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma. Eur Radiol. 2019;29(6):2890–901. https://doi.org/10.1007/s00330-018-5797-0.

Zhang X, Ruan S, Xiao W, Shao J, Tian W, Liu W, Zhang Z, Wan D, Huang J, Huang Q, et al. Contrast-enhanced CT radiomics for preoperative evaluation of microvascular invasion in hepatocellular carcinoma: a two-center study. Clin Transl Med. 2020;10(2):111. https://doi.org/10.1002/ctm2.1Eur.Radiol.11.

Feng S-T, Jia Y, Liao B, Huang B, Zhou Q, Li X, Wei K, Chen L, Li B, Wang W, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using GD-EOB-DTPA-enhanced MRI. Eur Radiol. 2019;29(9):4648–59. https://doi.org/10.1007/s00330-018-5935-8.

Ma X, Wei J, Gu D, Zhu Y, Feng B, Liang M, Wang S, Zhao X, Tian J. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol. 2019;29(7):3595–605. https://doi.org/10.1007/s00330-018-5985-y.

Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70(2):232–41. https://doi.org/10.1016/j.ejrad.2009.01.050.

Tran B, Dancey JE, Kamel-Reid S, McPherson JD, Bedard PL, Brown A, Zhang T, Shaw P, Onetto N, Stein L, et al. Cancer genomics: technology, discovery, and translation. J Clin Oncol. 2012;30(6):647–60. https://doi.org/10.1200/JCO.2011.39.2316.

Kaibori M, Ishizaki M, Matsui K, Kwon A-H. Predictors of microvascular invasion before hepatectomy for hepatocellular carcinoma. J Surg Oncol. 2010;102(5):462–8. https://doi.org/10.1002/jso.21631.

McHugh PP, Gilbert J, Vera S, Koch A, Ranjan D, Gedaly R. Alpha-fetoprotein and tumour size are associated with microvascular invasion in explanted livers of patients undergoing transplantation with hepatocellular carcinoma. HPB. 2010;12(1):56–61. https://doi.org/10.1111/j.1477-2574.2009.00128.x.

Lei Z, Li J, Wu D, Xia Y, Wang Q, Si A, Wang K, Wan X, Lau WY, Wu M, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria. JAMA Surg. 2016;151(4):356–63. https://doi.org/10.1001/jamasurg.2015.4257.

Zheng J, Chakraborty J, Chapman WC, Gerst S, Gonen M, Pak LM, Jarnagin WR, DeMatteo RP, Do RK, Simpson AL, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using quantitative image analysis. J Am Coll Surg. 2017;225(6):778–88. https://doi.org/10.1016/j.jamcollsurg.2017.09.003.

Chou C-T, Chen R-C, Lin W-C, Ko C-J, Chen C-B, Chen Y-L. Prediction of microvascular invasion of hepatocellular carcinoma: preoperative CT and histopathologic correlation. Am J Roentgenol. 2014;203(3):253–9. https://doi.org/10.2214/AJR.13.10595.

Baek YH, Lee S-W, Jeong Y-J, Jeong J-S, Roh Y-H, Han S-Y. Tumor-to-muscle ratio of 8F-FDG PET for predicting histologic features and recurrence of HCC. Hepato-gastroenterology. 2015;62(138):383–8. https://doi.org/10.5754/hge14873.

Bailly M, Venel Y, Orain I, Salamé E, Ribeiro M-J. 18F-FDG PET in liver transplantation setting of hepatocellular carcinoma: predicting histology? Clin Nucl Med. 2016;41(3):126–9. https://doi.org/10.1097/RLU.0000000000001040.

Yang L, Gu D, Wei J, Yang C, Rao S, Wang W, Chen C, Ding Y, Tian J, Zeng M. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Liver Cancer. 2019;8(5):373–86. https://doi.org/10.1159/000494099.

Li Y, Zhang Y, Fang Q, Zhang X, Hou P, Wu H, Wang X. Radiomics analysis of [18F] FDG PET/CT for microvascular invasion and prognosis prediction in very-early-and early-stage hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2021;48(8):2599–614. https://doi.org/10.1007/s00259-020-05119-9.