Preliminary archaeometallurgical studies on copper extraction from polymetallic ore sources in Meymand, south central Iranian desert

Archaeological and Anthropological Sciences - Tập 9 - Trang 1515-1528 - 2016
Mohammadamin Emami1,2, Torsten Kowald2, Reinhard Trettin2
1Department of Conservation and Restoration, Art University of Esfahan, Esfahan, Iran
2Department of Building Material Chemistry, University Siegen, Siegen, Germany

Tóm tắt

The occurrences of polymetallic sulphide and arsenide deposits (Cu, Cu + Fe + As, Cu + Au + Fe, Cu + Zn) in Meymand, central Iran, make this region as one of the most important areas for studying the beginning of metallurgy on the Iranian plateau. This research focuses on preliminary studies of smelting slags used for metallurgical purposes in the Meymand area. The slags were studied using XRD, including the Rietveld refining measurement for determining the crystalline phase composition. Cluster analysis was calculated using a correlation matrix and euclidean distance in the XRD pattern. XRF analysis was used to determine the major, minor and trace elements compositions. Mineralogical-petrological phase interpretation was carried out by polarization microscopy. The main segregation consists of augite, fayalite, clinoferrosilite and different phases of copper sulphides. According to the thermodynamic stability field of minerals, copper was extracted at approximately 950–1100 °C from an oxide-sulphide ore mixture.

Tài liệu tham khảo

Aagaard P, Helgeson HC (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, theoretical considerations. Am J Sci 282(3):237–285 Amrikazemi A (2014) The volcanic heritage of Iran. In Volcanic tourist destinations, Springer, 295–306 Atapour H, Aftabi A (2007) The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for exploration and the environment. J Geochem Explor 93(1):47–65 Bachmann HG (1982) The identification of slags from archaeological sites. Institute of Archaeology Bishop RL, Rands RL, Holley GR (1982) Ceramic compositional analysis in archaeological perspective Adv Archaeol Method Theory:275–330 Burger E, Bourgarit D, Frotté V, Pilon F (2011) Kinetics of iron–copper sulphides oxidation in relation to protohistoric copper smelting. J Therm Anal Calorim 103(1):249–256 Emami M (2014) “Toroud”, the late motion for As-Sb bearing Cu production from 2nd millennium BC in Iran: an archaeometallurgical approach. Mediterr Archaeol Archaeometry 14(2):169–188 Emami S, Volkmar J, Trettin R (2008) Quantitative characterisation of damage mechanisms in ancient ceramics by quantitative X-ray powder diffraction, polarisation microscopy, confocal laser scanning microscopy and non-contact mode atomic force microscopy. Surf Eng 24(2):129–137 Garrigós JBI, Kilikoglou V, Day P (2001) Chemical and mineralogical alteration of ceramics from a Late Bronze Age kiln at Kommos, Crete: the effect on the formation of a reference group. Archaeometry 43(3):349–371 Ghorbani M (2013) The economic geology of Iran: mineral deposits and natural resources, Springer Science & Business Media Hauptmann A (1985) 5000 Jahre Kupfer in Oman: Die Entwicklung der Kupfermetallurgie vom 3. Jahrtausend bis zur Neuzeit: Der Anschnitt, v. 4, Dt. Bergbaumuseum Hauptmann A, Pernicka E, Wagner GA (1989) Archäometallurgie der alten Welt. Der Anschnitt Beiheft 7 Hezarkhani Z, Keesmann I (1996) Archäometallurgische Untersuchungen im Gebiet von Saghand-Posht-e-Badam (Zentraliran). Metalla (Forschungsberichte des Deutschen Bergbau-Museums, Bochum) 3.2 (1996), 101–125, Metalla, (3.2), 101–125 Hiebert FT, Lamberg-Karlovsky CC (1992) Central Asia and the Indo-Iranian borderlands. Iran:1–15 Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343 Jerram DA, Cheadle MJ, Philpotts AR (2003) Quantifying the building blocks of igneous rocks: are clustered crystal frameworks the foundation? J Petrol 44(11):2033–2051 Kadowaki S, Maher L, Portillo M, Albert RM, Akashi C, Guliyev F, Nishiaki Y (2015) Geoarchaeological and palaeobotanical evidence for prehistoric cereal storage in the southern Caucasus: the Neolithic settlement of Göytepe (mid 8th millennium BP). J Archaeol Sci 53:408–425 Keesmann I, Bachmann H, Hauptmann A (1984) Classification of iron-rich slags according to the phase-composition. Fortschritt der Mineralogie:114–116 Keesmann I, Onorato MAM, Kronz A (1991) Investigaciones cientificas de la metalurgia de El Malagon y Los Millares, en el Sureste de Espana. Cuadernos de Prehistoria y Arqueología de la Universidad de Granada 16:247–302 Khodabakhshian M, Mofidi SM, Habib F (2012) Typology of earth-shelter architecture in Iran. Int J Archi Urban Dev 2(4):5–10 Kronz A, Eggers T (2001) Archäometallurgische Untersuchungen eisenzeitlicher Funde aus dem Hügelgräberfeld Hillesheim, Kreis Daun. Trierer Zeitschrift für Geschichte und Kunst des Trierer Landes und seiner Nachbargebiete 64:69–109 Lechtman H, Klein S (1999) The production of copper–arsenic alloys (arsenic bronze) by cosmelting: modern experiment, ancient practice. J Archaeol Sci 26(5):497–526 Lichtensteiger T (2002) Die petrologische Evaluation. In Im Einklang mit der Erde, Springer, p 193–208 Loeb LD (2011) Outcaste: Jewish life in southern Iran, v. 31, Routledge Maddin R, Muhly JD, Stech T (1999) Early metalworking at Çayönü. In: A. Hauptmann, Rehren Th, Yalcin U (eds.) The beginnings of metallurgy, Der Anschnitt, 37–44, E. P. Marechal J (1985) Methods of ore roasting and the furnaces used. (Retroactive Coverage), British Museum Publications Ltd., Furnaces and Smelting Technology in Antiquity, 29–41 Muhly JD (1999) Copper and bronze in Cyprus and the Eastern Mediterranean. Archaeometallurgy Asian Old World:15–25 Müller D, Groves DI (1993) Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore Geol Rev 8(5):383–406 Nesse WD (2004) Introduction to optical mineralogy, v. 3rd Edn, Oxford University Press Pereira F, Silva RJ, Soares AMM, Araújo MF (2013) The role of arsenic in chalcolithic copper artefacts—insights from Vila Nova de São Pedro (Portugal). J Archaeol Sci 40(4):2045–2056 Pigott VC (1999) A heartland of metallurgy: neolithic/chalcolithic metallurgical origins on the Iranian Plateau, Der Anschnitt, The Beginnings of Metallurgy (9):107–120 Ranjbar H, Masoumi F, Carranza E (2011) Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. Int J Remote Sens 32(12):3309–3327 Rehren T, Boscher L, Pernicka E (2012) Large scale smelting of speiss and arsenical copper at early Bronze age Arisman, Iran. J Archaeol Sci 39(6):1717–1727 Roberts BW, Thornton CP, Pigott VC (2009) Development of metallurgy in Eurasia. Antiquity 83(322):1012–1022 Ströbele F, Wenzel T, Kronz A, Hildebrandt LH, Markl G (2010) Mineralogical and geochemical characterization of high-medieval lead–silver smelting slags from Wiesloch near Heidelberg (Germany)—an approach to process reconstruction. Archaeol Anthropol Sci 2(3):191–215 Thornton C, Rehren T, Pigott V (2009) The production of speiss (iron arsenide) during the Early Bronze Age in Iran. J Archaeol Sci 36(2):308–316 Wertime TA (1968) Metallurgical expedition through the Persian desert. A team brings traditional metallurgy to bear on archaeology. Science 159(3818):927–935 Yoder CH, Schaeffer RW, McWilliams P, Rowand A, Liu X, Shambeda J (2011) The synthesis of copper/zinc solid solutions of hydroxyl carbonates, sulphates, nitrates, chlorides and bromides. Mineral Mag 75(5):2573–2582