Predispatch of hydroelectric power systems with modifications in network topologies

Springer Science and Business Media LLC - Tập 261 Số 1-2 - Trang 135-153 - 2018
Silvia M. S. Carvalho1, Aurélio Ribeiro Leite de Oliveira2, Christiano Lyra Filho3
1Federal University of São Carlos, Sorocaba, Brazil
2Applied Mathematics Department, University of Campinas (UNICAMP), Campinas, Brazil
3School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Campinas, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahuja, R., Magnanti, T., & Orlin, J. B. (1993). Network flows. New Jersey: Prentice Hall.

Carvalho, L. M. R., & Oliveira, A. R. L. (2009). Primal dual interior point method appliede to the short term hydroelectric scheuling including a perturbing parameter. IEEE Latin America Transactions, 7, 533–539.

Carvalho, S. M. S., & Oliveira, A. R. L. (2015). Interior point methods applied to the predispatch hydroelectric system with simulated modification in the network topology. IEEE Latin America Transactions, 13, 143–149.

Carvalho, S. M. S., & Oliveira, A. R. L. (2012). Interior-point methods applied to the predispatch problem of a hydroelectric system with scheduled line manipulations. American Journal of Operations Research, 02, 266–271.

Duff, I. S., Erisman, A. M., & Reid, J. K. (1986). Direct methods for sparse matrices. Oxford: Clarendon Press.

Franco, P., Carvalho, M. F., & Soares, S. (1994). A network flow model for short-term hydro-dominated hydrothermal scheduling problem. IEEE Transactions on Power Systems, 9(2), 1016–1021.

Garzillo, A., Innorta, M., & Ricci, R. (1999). The flexibility of interior point based power flow algorithms facing critical network situations. Electrical Power & Energy Systems, 21, 579–584.

Momoh, J. A., El-Hawary, M. E., & Adapa, R. (1999). A review of selected optimal power flow literature to 1993, part II Newton, linear programming and interior point methods. IEEE Transactions on Power Systems, 14(1), 105–111.

Ohishi, T., Soares, S., & Carvalho, M. F. (1991). Short term hydrothermal scheduling approach for dominantly hydro systems. IEEE Transactions on Power Systems, 6(2), 637–643.

Oliveira, A. R. L., Soares, S., & Nepomuceno, L. (2003). Optimal active power dispatch combining network flow and interior point approaches. IEEE Transactions on Power Systems, 18(4), 1235–1240.

Oliveira, A. R. L., Soares, S., & Nepomuceno, L. (2005). Short term hydroelectric scheduling combining network flow and interior point approaches. Electrical Power & Energy Systems, 27(2), 91–99.

Quintana, V. H., Torres, G. L., & Palomo, J. M. (2000). Interior point methods and their applications to power systems: A classification of publications and software codes. IEEE Transactions on Power Systems, 15(1), 170–176.

Soares, S., & Salmazo, C. T. (1997). Minimum loss predispatch model for hydroelectric systems. IEEE Transactions on Power Systems, 12(3), 1220–1228.

Stott, B., Jardim, J., & Alsaç, O. (2009). DC power flow revisited. IEEE Transactions on Power Systems, 24, 1290–1300.

Terry, L. A., Pereira, M. V. F., Neto, T. A. A., Silva, L. F. C. A., & Sales, P. R. H. (1986). Coordinating the energy generation of the brazilian national hydrothermal electrical generating system. Interfaces, 16(1), 16–38.