Predictive modeling of Persian walnut (Juglans regia L.) in vitro proliferation media using machine learning approaches: a comparative study of ANN, KNN and GEP models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Skender A, Kurtovic M, Drkenda P, Becirspahic D, Ebrahimi A. Phenotypic variability of autochthonous walnut (Juglansregia L) genotypes in northwestern Bosnia and Herzegovina. Turk J Agric For. 2020;44(5):517–25.
Driver JA, Kuniyuki AH. In vitro propagation of Paradox walnut rootstock. HortScience. 1984;19(4):507–9.
McGranahan GH, Driver JA, Tulecke W. Tissue culture of Juglans. In: Cell and tissue culture in forestry; 1987. Springer, Dordrecht. p. 261–271.
Cornu D, Jay-Allemand C. Micropropagation of hybrid walnut trees (Juglans nigra x Juglans regia) through culture and multiplication of embryos. In: Annales des sciences forestières 1989 (Vol. 46, No. Supplement, pp. 113s-116s). EDP Sciences.
Pijut PM. Micropropagation of Juglans cinerea L. (butternut). In: High-Tech and Micropropagation V 1997; Springer, Berlin. p. 345–357.
Bourrain L, Navatel JC. Plant production of walnut Juglans regia L. by in vitro multiplication. In: IV International Walnut Symposium 544 1999. p. 465–471.
Vahdati K, Jariteh M, Niknam V, Mirmasoumi M, Ebrahimzadeh H. Somatic embryogenesis and embryo maturation in Persian walnut. InV International Walnut Symposium. 2004;705:199–205.
Vahdati K, Najafian Ashrafi E, Ebrahimzadeh H, Mirmasoumi M. Improved micropropagation of walnut (Juglans regia L.) on media optimized for growth based upon mineral content of walnut seed. In: I International Symposium on Biotechnology of Fruit Species: BIOTECHFRUIT2008 839 200. p. 117–124.
Gotea R, Gotea I, Sestras RE, Vahdati K. In vitro Propagation of Several Walnut Cultivars. In: Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Horticulture. 2012. p. 69.
Licea-Moreno RJ, Contreras A, Morales AV, Urban I, Daquinta M, Gomez L. Improved walnut mass micropropagation through the combined use of phloroglucinol and FeEDDHA. Plant Cell Tissue Organ Culture. 2015;123(1):143–54.
Gruselle R, Boxus P. Walnut micropropagation. Int Symp Walnut Production. 1989;284:45–52.
Lone IA, Misger FA, Banday FA. Effect of different growth regulator combinations on the per cent media browning in walnut in vitro studies using MS medium. Asian J Soil Sci. 2017;12(1):135–42.
Sadat-Hosseini M, Vahdati K, Leslie CA. Germination of Persian walnut somatic embryos and evaluation of their genetic stability by ISSR fingerprinting and flow cytometry. HortScience. 2019;54(9):1576–80.
Yegizbayeva TK, García-García S, Yausheva TV, Kairova M, Apushev AK, Oleichenko SN, Licea-Moreno RJ. Unraveling Factors Affecting Micropropagation of Four Persian Walnut Varieties. Agronomy. 2021;11(7):1417.
Gago J, Martínez-Núñez L, Landín M, Gallego PP. Artificial neural networks as an alternative to the traditional statistical methodology in plant research. J Plant Physiol. 2010;167(1):23–7.
Gallego PP, Gago J, Landín M. Artificial neural networks technology to model and predict plant biology process. In: Suzuki K. Artificial Neural Networks-Methodological and Biomedical Applications (Croatia: Intech Open Access Publisher). 2011. p. 197–216.
Barone JO. Use of multiple regression analysis and artificial neural networks to model the effect of nitrogen in the organogenesis of Pinus taeda L. Plant Cell Tissue Organ Culture. 2019;137(3):455–64.
Hesami M, Naderi R, Tohidfar M. Modeling and optimizing medium composition for shoot regeneration of Chrysanthemum via radial basis function-non-dominated sorting genetic algorithm-II (RBF-NSGAII). Sci Rep. 2019;9(1):1–1.
Jamshidi S, Yadollahi A, Arab MM, Soltani M, Eftekhari M, Sabzalipoor H, Sheikhi A, Shiri J. Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation. Plant Methods. 2019;15(1):1–8.
García-Pérez P, Lozano-Milo E, Landin M, Gallego PP. Machine Learning unmasked nutritional imbalances on the medicinal plant Bryophyllum sp. cultured in vitro. Front Plant Sci. 2020;11:1887.
Salehi M, Farhadi S, Moieni A, Safaie N, Ahmadi H. Mathematical modeling of growth and paclitaxel biosynthesis in Corylus avellana cell culture responding to fungal elicitors using multilayer perceptron-genetic algorithm. Front Plant Sci. 2020;11:114.
Hesami M, Naderi R, Tohidfar M. Introducing a hybrid artificial intelligence method for high-throughput modeling and optimizing plant tissue culture processes: The establishment of a new embryogenesis medium for chrysanthemum, as a case study. Appl Microbiol Biotechnol. 2020;104(23):10249–63.
Jamshidi S, Yadollahi A, Ahmadi H, Arab MM, Eftekhari M. Predicting in vitro culture medium macro-nutrients composition for pear rootstocks using regression analysis and neural network models. Front Plant Sci. 2016;29(7):274.
Arab MM, Yadollahi A, Shojaeiyan A, Ahmadi H. Artificial neural network genetic algorithm as powerful tool to predict and optimize in vitro proliferation mineral medium for G× N15 rootstock. Front Plant Sci. 2016;19(7):1526.
Arab MM, Yadollahi A, Ahmadi H, Eftekhari M, Maleki M. Mathematical modeling and optimizing of in vitro hormonal combination for G× N15 vegetative rootstock proliferation using Artificial Neural Network-Genetic Algorithm (ANN-GA). Front Plant Sci. 2017;1(8):1853.
Arab MM, Yadollahi A, Eftekhari M, Ahmadi H, Akbari M, Khorami SS. Modeling and optimizing a new culture medium for in vitro rooting of G× N15 Prunus rootstock using artificial neural network-genetic algorithm. Sci Rep. 2018;8(1):1–8.
Jamshidi S, Yadollahi A, Arab MM, Soltani M, Eftekhari M, Shiri J. High throughput mathematical modeling and multi-objective evolutionary algorithms for plant tissue culture media formulation: Case study of pear rootstocks. PLoS ONE. 2020;15(12):e0243940.
Kosiński W, Prokopowicz P, Ślȩzak D. Fuzzy reals with algebraic operations: Algorithmic approach. InIntelligent Information Systems 2002. Heidelberg: Physica; 2002. p. 311–20.
Albiol J, Campmajó C, Casas C, Poch M. Biomass estimation in plant cell cultures: a neural network approach. Biotechnol Prog. 1995;11(1):88–92.
Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027. 2001.
Chu Y, Urquhart B, Gohari SM, Pedro HT, Kleissl J, Coimbra CF. Short-term reforecasting of power output from a 48 MWe solar PV plant. Sol Energy. 2015;1(112):68–77.
Tongal H. Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks. Earth Sci Res J. 2013;17(2):119–26.
Antonio LM, Coello CA. Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE Congress on Evolutionary Computation 2013. p. 2758–2765.
Durillo JJ, Nebro AJ, Coello CA, García-Nieto J, Luna F, Alba E. A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans Evol Comput. 2010;14(4):618–35.
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.
Bosela MJ, Michler CH. Media effects on black walnut (Juglans nigra L) shoot culture growth in vitro: evaluation of multiple nutrient formulations and cytokinin types. Vitro Cell Develop Biol-Plant. 2008;44(4):316–29.
Kepenek KA, Kolağasi Z. Micropropagation of Walnut (Juglans regia L). Acta Phys Pol, A. 2016;130:1.
Stevens ME, Pijut PM. Rapid in vitro shoot multiplication of the recalcitrant species Juglans nigra L. In Vitro Cell Develop Biol-Plant. 2018;54(3):309–17.
Hassankhah A, Vahdati K, Lotfi M, Mirmasoumi M, Preece J, Assareh MH. Effects of ventilation and sucrose concentrations on the growth and plantlet anatomy of micropropagated Persian walnut plants. Int J Horticult Sci Technol. 2014;1(2):111–20.
Ashrafi EN, Vahdati K, Ebrahimzadeh H, Mirmasoumi M. Analysis of in-vitro explants mineral contents to modify medium mineral composition for enhancing growth of Persian walnut (Juglans regia L). J Food Agric Environ. 2010;8:325–9.
Eftekhari M, Yadollahi A, Ahmadi H, Shojaeiyan A, Ayyari M. Development of an artificial neural network as a tool for predicting the targeted phenolic profile of grapevine (Vitis vinifera) foliar wastes. Front Plant Sci. 2018;19(9):837.
Sheikhi A, Mirdehghan SH, Arab MM, Eftekhari M, Ahmadi H, Jamshidi S, Gheysarbigi S. Novel organic-based postharvest sanitizer formulation using Box Behnken design and mathematical modeling approach: A case study of fresh pistachio storage under modified atmosphere packaging. Postharvest Biol Technol. 2020;160:111047.
Gandomi AH, Alavi AH. A new multi-gene genetic programming approach to nonlinear system modeling Part I: materials and structural engineering problems. Neural Computing Appl. 2012;21(1):171–87.
Gandomi AH, Alavi AH, Arjmandi P, Aghaeifar A, Seyednour R. Genetic programming and orthogonal least squares: a hybrid approach to modeling the compressive strength of CFRP-confined concrete cylinders. J Mech Mater Struct. 2010;5(5):735–53.
Gandomi AH, Roke DA. Assessment of artificial neural network and genetic programming as predictive tools. Adv Eng Softw. 2015;1(88):63–72.
De Giorgi MG, Congedo PM, Malvoni M, Laforgia D. Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate. Energy Convers Manage. 2015;1(100):117–30.
Kannangara M, Dua R, Ahmadi L, Bensebaa F. Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches. Waste Manage. 2018;1(74):3–15.
Bagheri M, Bazvand A, Ehteshami M. Application of artificial intelligence for the management of landfill leachate penetration into groundwater, and assessment of its environmental impacts. J Clean Prod. 2017;15(149):784–96.
Quiros AR, Bedruz RA, Uy AC, Abad A, Bandala A, Dadios EP, Fernando A. A kNN-based approach for the machine vision of character recognition of license plate numbers. InTENCON 2017–2017 IEEE Region 10 Conference 2017. p. 1081–1086.
Mahmoudzadeh H, Matinfar HR, Taghizadeh-Mehrjardi R, Kerry R. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Reg. 2020;21:e00260.
Dikmen E. Gene expression programming strategy for estimation performance of LiBr–H 2 O absorption cooling system. Neural Comput Appl. 2015;26(2):409–15.
Nazari A. RETRACTED ARTICLE: Application of gene expression programming to predict the compressive damage of lightweight aluminosilicate geopolymer. Neural Comput Appl. 2019;31(2):767–76.
Esha R, Imteaz MA. Pioneer use of gene expression programming for predicting seasonal streamflow in Australia using large scale climate drivers. Ecohydrology. 2020;13(8):e2242.
Zhong J, Feng L, Ong YS. Gene expression programming: A survey. IEEE Comput Intell Mag. 2017;12(3):54–72.
Xu L, Huang Y, Shen X, Liu Y. Parallelizing gene expression programming algorithm in enabling large-scale classification. Sci Program. 2017;20:2017.
Ferreira C. Gene expression programming: mathematical modeling by an artificial intelligence. New York: Springer; 2006.
Nas MN, Read PE. A hypothesis for the development of a defined tissue culture medium of higher plants and micropropagation of hazelnuts. Sci Hortic. 2004;101(1–2):189–200.
Gago J, Landín M, Gallego PP. A neurofuzzy logic approach for modeling plant processes: A practical case of in vitro direct rooting and acclimatization of Vitis vinifera L. Plant Sci. 2010;179(3):241–9.
Gago J, Landín M, Gallego PP. Artificial neural networks modeling the in vitro rhizogenesis and acclimatization of Vitis vinifera L. J Plant Physiol. 2010;167(15):1226–31.
Gago J, Pérez-Tornero O, Landín M, Burgos L, Gallego PP. Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: a practical case of data mining using apricot databases. J Plant Physiol. 2011;168(15):1858–65.
Niedz RP, Hyndman SE, Evens TJ, Weathersbee AA. Mineral nutrition and in vitro growth of Gerbera hybrida (Asteraceae). In Vitro Cell Develop Biol-Plant. 2014;50(4):458–70.
Nezami-Alanagh E, Garoosi GA, Landín M, Gallego PP. Combining DOE with neurofuzzy logic for healthy mineral nutrition of pistachio rootstocks in vitro culture. Front Plant Sci. 2018;9:1474.
Nezami-Alanagh E, Garoosi GA, Haddad R, Maleki S, Landín M, Gallego PP. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell Tissue Organ Culture (PCTOC). 2014;117(3):349–59.
Reed M, Sugae W, Randall P. Niedz & Barbara. In Vitro Cell Dev Biol-Plant. 2015;51:19–27.
Nezami-Alanagh E, Garoosi GA, Landín M, Gallego PP. Computer-based tools provide new insight into the key factors that cause physiological disorders of pistachio rootstocks cultured in vitro. Sci Reports. 2019;9(1):1–5.
Plant IV. Barbara M. Reed, Sugae Wada, Jeanine DeNoma & Randall P. Niedz.
Nezami-Alanagh E, Garoosi GA, Maleki S, Landín M, Gallego PP. Predicting optimal in vitro culture medium for Pistacia vera micropropagation using neural networks models. Plant Cell Tissue Organ Culture 2017;129(1):19–33.
Niedz RP, Evens TJ. A solution to the problem of ion confounding in experimental biology. Nat Methods. 2006;3(6):417.
Vanstraelen M, Benková E. Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol. 2012;10(28):463–87.
Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell. 2015;27(1):44–63.
George EF, Hall MA, De Klerk GJ. Plant growth regulators I: Introduction; auxins, their analogues and inhibitors. In: Plant propagation by tissue culture 2008 (pp. 175–204). Springer, Dordrecht.
Pasternak T, Miskolczi P, Ayaydin F, Mészáros T, Dudits D, Fehér A. Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa. Plant Growth Regul. 2000;32(2):129–41.
Hepaksoy S. Investigations on micropropagation of some cherry rootstocks I shoot development and proliferation. Ziraat Fakultesi Dergisi. 2004;41(3):11.
Ružić D, Vujović T, Nikolić D, Cerović R. In vitro growth responses of the ‘Pyrodwarf’pear rootstock to cytokinin types. Romanian Biotechnological Letters. 2011;16(5):6631.
Molassiotis AN, Dimassi K, Therios I, Diamantidis G. Fe-EDDHA promotes rooting of rootstock GF-677 (Prunus amygdalus× P persica) explants in vitro. Biol Plant. 2003;47(1):141–4.
Chalupa V. Clonal propagation of broad-leaved forest trees in vitro. Communicationes Instituti Forestalis Cechosloveniae. 1982;12:9.
Revilla MA, Majada J, Rodriguez R. Walnut (Juglans regia L.) micropropagation. InAnnales des Sciences Forestières 1989 (Vol. 46, No. Supplement, pp. 149s-151s). EDP Sciences.
Jay-Allemand C, Capelli P, Cornu D. Root development of in vitro hybrid walnut microcuttings in a vermiculite-containing gelrite medium. Sci Hortic. 1992;51(3–4):335–42.
Heloir MC, Kevers C, Hausman JF, Gaspar T. Changes in the concentrations of auxins and polyamines during rooting of in-vitro-propagated walnut shoots. Tree Physiol. 1996;16(5):515–9.
Saadat YA, Hennerty MJ. The effects of different in vitro and ex vitro treatments on the rooting performance of Persian walnut (Juglans regia L) microshoots. In: IV International Walnut Symposium 544 1999. p. 473–480.
Yang Z, Lüdders P. In vitro propagation of Pistachio (Pistacia vera L). Gartenbauwissenschaft. 1994;59(1):30–4.
Onay A. In Vitro organogenesis and embryogenesis of pistachio, Pistacia vera L (Doctoral dissertation, University of Edinburgh).
Poothong S, Reed BM. Optimizing shoot culture media for Rubus germplasm: the effects of NH 4+, NO 3−, and total nitrogen. In Vitro Cell Devel Biol-Plant. 2016;52(3):265–75.
Kovalchuk IY, Mukhitdinova Z, Turdiyev T, Madiyeva G, Akin M, Eyduran E, Reed BM. Modeling some mineral nutrient requirements for micropropagated wild apricot shoot cultures. Plant Cell Tissue Organ Culture. 2017;129(2):325–35.
Akin M, Eyduran E, Niedz RP, Reed BM. Developing hazelnut tissue culture medium free of ion confounding. Plant Cell Tissue Organ Culture. 2017;130(3):483–94.
Fushiki T. Estimation of prediction error by using K-fold cross-validation. Stat Comput. 2011;21(2):137–46.
Shiri J, Marti P, Karimi S, Landeras G. Data splitting strategies for improving data driven models for reference evapotranspiration estimation among similar stations. Comput Electron Agric. 2019;1(162):70–81.
Hair Jr JF, Black WC, Babin BJ, Anderson RE. Multivariate Data Analysis A Global Perspective. New Jersey: Person Education.
Moghaddamnia A, Gousheh MG, Piri J, Amin S, Han D. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour. 2009;32(1):88–97.
Hassanpour Kashani M, Montaseri M, Lotfollahi Yaghin MA. Flood estimation at ungauged sites using a new hybrid model. J Appl Sci. 2008;8(9):1744–9.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. II: Hydrologic applications. J Hydrol Eng. 2000;5(2):124–37.
Wei CC. Predictions of surface solar radiation on tilted solar panels using machine learning models: A case study of Tainan city. Taiwan Energies. 2017t;10(10):1660.
Dey P, Das AK. A utilization of GEP (gene expression programming) metamodel and PSO (particle swarm optimization) tool to predict and optimize the forced convection around a cylinder. Energy. 2016;15(95):447–58.
Gholampour A, Gandomi AH, Ozbakkaloglu T. New formulations for mechanical properties of recycled aggregate concrete using gene expression programming. Constr Build Mater. 2017;15(130):122–45.
Ferreira C. Gene expression programming in problem solving. In: Soft computing and industry; 2002. Springer, London. pp. 635–653
Ferreira SC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WN. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179–86.
Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks 1995; Vol. 4, p. 1942–1948.