Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence

Proteomics - Tập 4 Số 6 - Trang 1633-1649 - 2004
Nikolaj Blom1, Thomas Sicheritz‐Pontén1, Ramneek Gupta1, Steen Gammeltoft2, Søren Brunak1
1Center for Biological sequence analysis, The Technical University of Denmark, Lyngby, Denmark
2Department of Clinical Biochemistry, Glostrup Hospital, Glostrup, Denmark

Tóm tắt

Abstract

Post‐translational modifications (PTMs) occur on almost all proteins analyzed to date. The function of a modified protein is often strongly affected by these modifications and therefore increased knowledge about the potential PTMs of a target protein may increase our understanding of the molecular processes in which it takes part. High‐throughput methods for the identification of PTMs are being developed, in particular within the fields of proteomics and mass spectrometry. However, these methods are still in their early stages, and it is indeed advantageous to cut down on the number of experimental steps by integrating computational approaches into the validation procedures. Many advanced methods for the prediction of PTMs exist and many are made publicly available. We describe our experiences with the development of prediction methods for phosphorylation and glycosylation sites and the development of PTM‐specific databases. In addition, we discuss novel ideas for PTM visualization (exemplified by kinase landscapes) and improvements for prediction specificity (by using ESS – evolutionary stable sites). As an example, we present a new method for kinase‐specific prediction of phosphorylation sites, NetPhosK, which extends our earlier and more general tool, NetPhos. The new server, NetPhosK, is made publicly available at the URL http://www.cbs.dtu.dk/services/NetPhosK/. The issues of underestimation, over‐prediction and strategies for improving prediction specificity are also discussed.

Từ khóa


Tài liệu tham khảo

10.1006/jmbi.1998.2144

10.1016/S1357-2725(99)00106-5

10.1016/S0022-2836(02)00379-0

10.1101/gr.1190803

10.1093/nar/gkg038

10.1093/bib/3.3.265

10.1146/annurev.ph.50.030188.002051

10.1002/pro.5560020210

10.1093/nar/27.1.215

10.1385/ENDO:11:3:285

10.1016/S1074-5521(00)00093-4

10.1038/382275a0

10.1093/glycob/2.2.99

10.1093/glycob/3.2.97

10.1007/BF01049675

10.1023/A:1018551228663

10.1006/jmbi.1999.3069

10.1021/bi00250a003

10.1091/mbc.9.2.291

10.1091/mbc.9.2.301

10.1074/jbc.M001732200

10.1093/protein/3.5.433

10.1016/S0021-9258(19)38606-5

10.1074/jbc.270.24.14756

10.1096/fasebj.10.8.8666161

10.1146/annurev.biochem.66.1.315

10.1016/S0074-7696(08)60416-7

10.1073/pnas.91.19.8935

Asker N., 1995, Biochem. J., 308, 873, 10.1042/bj3080873

10.1093/glycob/6.6.635

10.1016/S0021-9258(17)43295-9

10.1146/annurev.bi.58.070189.004205

10.1083/jcb.104.5.1157

10.1016/S0021-9258(19)50380-5

10.1021/bi951918j

10.1073/pnas.92.10.4417

10.1074/jbc.270.32.18961

10.1007/978-1-4615-1885-3_10

10.1006/bbrc.1997.6110

10.1006/jmbi.1999.3310

10.1016/S0304-419X(97)00022-X

10.1098/rstb.1998.0228

10.1016/S0092-8674(00)81092-2

10.1016/S0014-5793(98)00606-1

10.1016/S0167-4889(96)00083-3

10.1016/S1040-7952(97)80008-0

10.1016/S0960-9822(00)00221-9

10.1016/S0097-8485(96)00038-1

Baldi P., 2002, Bioinformatics: The Machine Learning Approach

10.1016/S0167-7799(02)01944-3

10.1016/0968-0004(93)90109-Z

10.1074/jbc.M206399200

10.1038/86737

10.1093/nar/gkg095

10.1093/nar/27.1.370

10.1093/nar/27.1.237

10.1093/nar/gkg545

10.1093/bioinformatics/18.8.1149

10.1042/bj3080801

10.1023/A:1006960004440

10.1042/bj2750529

10.1006/excr.1996.3434

Elhammer A., 1993, J. Biol. Chem., 268, 10029, 10.1016/S0021-9258(18)82168-8

10.1023/A:1026465232149

10.1146/annurev.bb.22.060193.001435

10.1016/0005-2795(75)90109-9

10.1101/gr.122800

10.1002/prot.340090107

10.1002/(SICI)1097-0134(199602)24:2<165::AID-PROT4>3.0.CO;2-I

10.1016/S0022-2836(03)00490-X

10.1038/35042675

10.1002/pro.5560051107

Gupta R., 2002, Ernst Schering Res. Found. Workshop, 38, 276

10.1101/gr.1680803

10.1073/pnas.0134224100

10.1002/1615-9861(200102)1:2<340::AID-PROT340>3.0.CO;2-B

10.1093/glycob/9.10.1009

10.1093/bioinformatics/18.5.769

10.1007/BF00731215

10.1093/glycob/1.2.131