Prediction of microstructure evolution during multi-stand shape rolling of nickel-base superalloys
Tóm tắt
Từ khóa
Tài liệu tham khảo
Minisandram RS, Thompson EG, Forbes Jones RM, Stedje-Larsen R (2001) Numerical simulation of a multi-stand rolling mill. In: Mori K (ed)Proceedings of the 7th international conference on numerical methods in industrial forming processes - NUMIFORM 2001, Toyohashi, Japan, 18–21 June 2001.. Swets & Zeitlinger B.V., Lisse.
Subramanian K, Minisandram RS, Cherukuri HP (2007) Mesh re-zoning in multi-stand rolling. In: César de Sá JMA (ed)Proceedings of the 9th international conference on numerical methods in industrial forming processes - NUMIFORM 2007, Porto, Portugal, 17–21 June 2007.. American Institute of Physics (API), College Park.
Brand AJ, Karhausen K, Kopp R: Microstructural simulation of nickel based inconel 718 in production of turbine discs. Mater Sci Tech 1996, 12(11):963–969. 10.1179/mst.1996.12.11.963
Thomas JP, Bauchet E, Dumont C, Montheillet F: EBSD Investigation and modelling of the microstructural evolutions of superalloy 718 during hot deformation. In Proceedings of Superalloys 2004. Edited by: Green KA. The Minerals, Metals & Materials Society (TMS), Warrendale; 2004:959–968.
Zienkiewicz O: Flow formulation for numerical solution of forming processes. In Numerical analysis of forming processes. Wiley, New York; 1984:1–69.
Humphreys FJ, Hatherly M: Recrystallization and related annealing phenomena. Elsevier, Oxford; 2004.
Sellars CM: Recrystallization of metals during hot deformation. Philos T Roy Soc A 1978, 288(1350):147–158. 10.1098/rsta.1978.0010
Huang D, Wu WT, Lambert D, Semiatin SL: Computer simulation of microstructure evolution during hot forging of waspaloy and nickel alloy 718. In Proceedings of symposium: microstructure modeling and prediction during thermomechanical processing, Indianapolis, November 4–8 2001. Edited by: Srinivasan R, Semiatin SL, Beaudoin A, Fox S, Jin Z. TMS, Warrendale; 2001:137–147.
Shen G (1994) Modeling microstructural development in the forging of waspaloy turbine engine disks. Dissertation, Ohio State University. Shen G (1994) Modeling microstructural development in the forging of waspaloy turbine engine disks. Dissertation, Ohio State University.
Sellars CM, Whiteman JA: Recrystallization and grain growth in hot rolling. Met Sci 1979, 13: 187–194. 10.1179/msc.1979.13.3-4.187
Davenport SB, Silk NJ, Sparks CN, Sellars CM: Development of constitutive equations for modelling of hot rolling. Mat Sci Tech 2000, 16(5):539–546. 10.1179/026708300101508045
Shen G: Microstructure modeling in superalloy forging. In Cold and hot forging: fundamentals. Edited by: Altan T. ASM International, Novelty; 2005:247–255.
Shen G, Semiatin SL, Shivpuri R: Modeling microstructural development during the forging of waspaloy. Metall Mater Trans A 1995, 26(7):1795–1803. 10.1007/BF02670767
Anderson MP, Srolovitz DJ, Grest GS, Sahni PS: Computer simulation of grain growth – I. Kinetics. Acta Metall 1983, 32(5):783–791. 10.1016/0001-6160(84)90151-2
Beynon JH, Sellars CM: Modeling microstructure and its effects during multipass hot rolling. ISIJ Intl 1992, 32(3):359–367. 10.2355/isijinternational.32.359
Lin J, Liu Y, Farrugia DCJ, Zhou M: Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling. Phil Mag 2005, 85(18):1967–1987. 10.1080/14786430412331305285
Mirza MS, Sellars CM, Karhausen K, Evans P: Multiphase rolling of aluminium alloys: finite element simulation and microstructural evolution. Mat Sci Tech 2001, 17(7):874–879. 10.1179/026708301101510663
Kusiak J, Kuziak R, Wajda W, Kowalski B (1999) Finite-element modeling of forging of nickel based superalloys. In: Kanagy DL (ed)Proceedings of 41st Mechanical Working and Steel Processing Conference, Baltimore, Maryland, October 24–27 1999, 683–688.. Iron and Steel Society, London, vol. XXXVII.
Dandre CA, Walsh CA, Evans RW, Reed RC, Roberts SM: Microstructural evolution of Inconel 718 during ingot breakdown: process modelling and validation. Mat Sci Tech 2000, 16(1):14–26. 10.1179/026708300773002627
Duan X, Sheppard T: Prediction of temperature evolution by FEM during multi-pass hot flat rolling of aluminum alloys. Model Sim Mater Sci Engng 2001, 9(6):525–538. 10.1088/0965-0393/9/6/305
Mukhopadhyay A, Howard IC, Sellars CM: Development and validation of a finite element model for hot rolling using ABAQUS/STANDARD. Mat Sci Tech 2004, 20(9):1123–1133. 10.1179/026708304225022070
Goerdeler M, Crumbach M, Gottstein G, Neumann L, Luce R, Kopp R, Allen CM, Winden Mvd, Karhausen K: Integral modeling of texture evolution in multiple pass hot rolling in aluminium alloys. Mat Sci Forum 2002, 396–402: 379–386. 10.4028/www.scientific.net/MSF.396-402.379
Phaniraj MD, Behera BB, Lahiri AK: Thermo-mechanical modeling of two phase rolling and microstructural evolution in the hot strip mill Part II. - Microstructure evolution. Mat Proc Tech 2006, 178(1–3):388–394. 10.1016/j.jmatprotec.2006.03.173
Zhao D, Cheng C, Anbajagane R, Dong H, Suarez FS (1997) Three-dimensional computer simulation of alloy 718: Ingot breakdown by cogging. In: Loria EA (ed)Proceedings of the 4th International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, Pennsylvania, June, 15–18 1997, 163–172.. The Minerals, Metals & Materials Society (TMS), Warrendale.
Hirch J, Karhausen K, Kopp R (1994) Microstructural simulation during hot rolling of Al-Mg Alloys In: Proceedings of the 4th International Conference on Aluminium Alloys, Atlanta, Georgia, Georgia Institute of Technology, School of Materials Science & Engineering, 476–483, Atlanta.
Serajzadeh S: Prediction of microstructural changes during hot rod rolling. Int J Mach Tools Manf 2003, 43(14):1487–1495. 10.1016/S0890-6955(03)00167-6
Serajzadeh S: Thermomechanical modeling of hot slab rolling. Mat Sci Tech 2005, 21(1):93–102. 10.1179/174328405X14056
Zhou LX, Baker TN: Effects of dynamic and metadynamic recrystallization on microstructures of wrought IN-718 due to hot deformation. Mat Sci Engng A 1995, 196(1–2):89–95. 10.1016/0921-5093(94)09717-8
Serajzadeh S: Prediction of dynamic recrystallization kinetics during hot rolling. Model Sim Mat Sci Engng 2004, 12(6):1185–1200. 10.1088/0965-0393/12/6/012
Semiatin SL, Weaver DS, Fagin PN, Glavicic MG, Goetz RL, Frey ND, Kramb RC, Antony MM: Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material. Metall Mater Trans A 2004, 35(2):679–693. 10.1007/s11661-004-0379-y
Karhausen K, Kopp R, de Souza MM: Numerical simulation method for designing thermomechanical treatments, illustrated by bar rolling. Scandinavian J Metall 1991, 20(6):351–363.
Pauskar P, Shivpuri R: Microstructure and mechanics interaction in the modeling of hot rolling of rods. CIRP Annals Manuf Tech 1999, 48(1):101–104. 10.1016/S0007-8506(07)63163-1
Yeom JT, Lee CS, Kima JH, Park NK: Finite-element analysis of microstructure evolution in the cogging of an alloy 718 ingot. Mat Sci Eng A 2007, 449–451: 722–726. 10.1016/j.msea.2006.02.415
Subramanian K (2009) Microstructure evolution during multi-stand rolling of nickel-base superalloy. Dissertation, University of North Carolina at Charlotte.
Guest RP, Tin S (2005) The dynamic and metadynamic recrystallisation of the in 718. In: Loria EA (ed)Proceedings of the 6th international symposium on superalloys 718, 625, 706 and various derivatives, Pittsburgh PA, October 2–5 2005.. The Minerals, Metals & Materials Society (TMS), Warrendale.