Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420

Abderrahmen Zerti1, Mohamed Athmane Yallese1, Oussama Zerti1, Mourad Nouioua1, Riad Khettabi1
1Mechanics and Structures Research Laboratory (LMS), Mechanical Engineering Department, Université 8 Mai 1945, Guelma, Algeria

Tóm tắt

The purpose of this experimental work is to study the impact of the machining parameters ( Vc, ap, and f) on the surface roughness criteria ( Ra, Rz, and Rt) as well as on the cutting force components ( Fx, Fy, and Fz), during dry turning of martensitic stainless steel (AISI 420) treated at 59 hardness Rockwell cone. The machining tests were carried out using the coated mixed ceramic cutting-insert (CC6050) according to the Taguchi design (L25). Analysis of the variance (ANOVA) as well as Pareto graphs made it possible to quantify the contributions of ( Vc, ap, and f) on the output parameters. The response surface methodology and the artificial neural networks approach were used for output modeling. Finally, the optimization of the machining parameters was performed using desirability function (DF) minimizing the surface roughness and the cutting forces simultaneously. The results indicated that the roughness is strongly affected by the feed rate ( f) with contributions of (80.71%, 80.26%, and 81.80%) for ( Ra, Rz, and Rt) respectively, and that the depth of cut ( ap) is the factor having the major influence on the cutting forces ( Fx = 53.76%, Fy = 50.79%, and Fz = 65.31%). Furthermore, artificial neural network and response surface methodology models correlate very well with experimental data. However, artificial neural network models show better accuracy. The optimum machining setting for multi-objective optimization is Vc = 80 m/min, f = 0.08 mm/rev and ap = 0.141 mm.

Từ khóa


Tài liệu tham khảo

Sourmail T and Bhadeshia HKDH. Stainless steels. University of Cambridge, 2011. Available at: http://www.phase-trans.msm.cam.ac.uk/2005/Stainless_steels/stainless.html.

10.1080/10426910903447337

10.1016/S0007-8506(07)60200-5

10.1007/s00170-008-1523-4

Stephenson DA, Agapiou JS. Metal cutting theory and practice, Boca Raton, FL: Taylor and Francis Group, 2006, pp. 17–70.

10.1504/IJPTECH.2007.015346

10.1007/s00170-014-6506-z

Sobiyi K and Sigalas I. Optimisation in hard turning of martensitic stainless steel using Taguchi method. In: International conference on chemical, civil and environmental engineering (ICCCEE'2015), London, 23–24 March 2015, pp.111–115.

10.1016/j.jmatprotec.2005.04.082

10.1016/j.jmatprotec.2008.08.016

10.1016/S0924-0136(02)00180-2

10.1016/j.measurement.2012.10.013

Stru MNO, 2011, Material Tehnol, 45, 105

10.1016/j.proeng.2013.02.076

10.1007/s11740-008-0132-2

10.1177/0954405414526385

10.3923/jas.2007.2509.2513

10.1016/j.jmatprotec.2006.03.137

10.1016/S0924-0136(02)00282-0

10.1515/meceng-2016-0023

Zerti O, 2018, Int J Ind Eng Comput, 9, 173

10.1007/s00170-014-6043-9

10.1016/j.jclepro.2012.08.008

10.1016/j.measurement.2011.12.004

Ucun I, 2008, Electron J Mach Technol, 5, 13

10.1080/0951192X.2012.749537

10.1080/0951192X.2010.511651

10.1080/0951192X.2012.749535

10.2174/1874836801408010389

10.1016/j.jmatprotec.2007.02.031

10.1007/s00521-014-1721-y

10.1016/j.procs.2015.03.145

Bachy B, 2015, Int J Ind Eng Comput, 6, 553

10.1016/j.measurement.2016.04.039

10.1016/j.jclepro.2013.03.049

Asiltürk I, 2011, Measurement, 44, 1697

10.1007/s00170-016-9162-7

10.1504/IJMPT.2014.064934

10.1016/j.jmatprotec.2007.12.018

10.3311/PPme.8742

10.1007/s00170-017-0589-2

10.1007/s00170-016-9858-8

10.1243/09544054JEM1035

Zahia H, 2015, Int J Ind Eng Comput, 6, 267

10.1016/j.measurement.2015.11.042

Selaimia A-A, Measurement 2017, 107, 53

10.1007/s12541-013-0245-1

10.5755/j01.mech.18.5.2704