Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Dự đoán thành viên của lớp độ hòa tan và thẩm thấu: Phân loại BCS tạm thời của những loại thuốc uống hàng đầu thế giới
Tóm tắt
Hệ thống Phân loại Sinh dược (BCS) phân loại các loại thuốc thành một trong bốn lớp sinh dược dựa trên đặc điểm độ hòa tan trong nước và khả năng thẩm thấu qua màng và cho phép dự đoán một cách tổng quát bước giới hạn tốc độ trong quá trình hấp thụ qua đường tiêu hóa sau khi dùng thuốc đường uống. Kể từ khi được giới thiệu vào năm 1995, BCS đã tạo ra tác động đáng kể trong lĩnh vực khoa học dược phẩm toàn cầu, trong việc phát hiện thuốc, phát triển và quy định, và việc xác thực/thảo luận/mở rộng BCS liên tục được công bố trong tài liệu. BCS đã được các cơ quan quản lý thuốc trên toàn thế giới áp dụng hiệu quả để thiết lập tiêu chuẩn sinh khả dụng/sinh tương đương cho việc phê duyệt sản phẩm thuốc uống giải phóng tức thì (IR). Trong bài đánh giá này, chúng tôi mô tả khung khái niệm khoa học của BCS và tác động đến thực tiễn quy định các sản phẩm thuốc uống và xem xét phân loại BCS tạm thời của những loại thuốc hàng đầu trên thị trường toàn cầu. Hệ thống Phân loại Phân phối Thuốc Sinh dược và mối liên hệ của nó với BCS cũng được thảo luận. Một phát hiện đáng chú ý của phân loại BCS tạm thời là hiệu suất lâm sàng của đa số các sản phẩm thuốc uống IR được phê duyệt thiết yếu cho sức khỏe con người có thể được đảm bảo thông qua một bài kiểm tra độ tan trong ống nghiệm, thay vì qua các nghiên cứu thực nghiệm trên người sống.
Từ khóa
#Hệ thống Phân loại Sinh dược #BCS #độ hòa tan #khả năng thẩm thấu #thuốc đường uống #quy định dược phẩmTài liệu tham khảo
Dahan A, Amidon GL. Gastrointestinal dissolution and absorption of class II drugs. In: Van de Waterbeemdand H, Testa B, editors. Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. Weinheim: Wiley-VCH; 2008. p. 33–51.
Lennernas H. Human intestinal permeability. J Pharm Sci. 1998;87:403–10.
Sun D, Yu L, Hussain M, Wall D, Smith R, Amidon G. In vitro testing of drug absorption for drug ‘developability’ assessment: forming an interface between in vitro preclinical data and clinical outcome. Curr Opin Drug Discov Devel. 2004;7:75–85.
Yu LX, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev. 1996;19:359.
Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413.
Lobenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50:3–12.
Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol. 2002;42:620–43.
Dahan A, Amidon GL. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Phys Gastro Liver Physiol. 2009;297:G371–7.
Kovacevic I, Parojcic J, Homsek I, Tubic-Grozdanis M, Langguth P. Justification of biowaiver for carbamazepine, a low soluble high permeable compound, in solid dosage forms based on IVIVC and gastrointestinal simulation. Mol Pharmaceutics. 2009;6:40–7.
Polli J. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms. AAPS J. 2008;10:289–99.
Polli J, Abrahamsson B, Yu L, Amidon G, Baldoni J, Cook J, et al. Summary workshop report: bioequivalence, biopharmaceutics classification system, and beyond. AAPS J. 2008;10:373–9.
Thiel-Demby VE, Humphreys JE, St. John Williams LA, Ellens HM, Shah N, Ayrton AD, et al. Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay. Mol Pharmaceutics. 2009;6:11–8.
Yang Y, Faustino PJ, Volpe DA, Ellison CD, Lyon RC, Yu LX. Biopharmaceutics classification of selected beta-blockers: solubility and permeability class membership. Mol Pharmaceutics. 2007;4:608–14.
Ahr G, Voith B, Kuhlmann J. Guidances related to bioavailability and bioequivalence: European industry perspective. Eur J Drug Metab Pharmacokinet. 2000;25:25–7.
Cook J, Addicks W, Wu Y. Application of the biopharmaceutical classification system in clinical drug development—an industrial view. AAPS J. 2008;10:306–10.
Ku M. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008;10:208–12.
Lennernas H, Abrahamsson B. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J Pharm Pharmacol. 2005;57:273–85.
CDER/FDA. Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate release dosage forms based on a biopharmaceutical classification system, Center for Drug Evaluation and Research, 2000.
Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res. 2002;19:921.
Blume HH, Schug BS. The biopharmaceutics classification system (BCS): class III drugs—better candidates for BA/BE waiver? Eur J Pharm Sci. 1999;9:117.
Cheng CL, Yu LX, Lee HL, Yang CY, Lue CS, Chou CH. Biowaiver extension potential to BCS Class III high solubility–low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci. 2004;22:297.
Jantratid E, Prakongpan S, Amidon GL, Dressman J. Feasibility of biowaiver extension to biopharmaceutics classification system class III drug products: cimetidine. Clin Pharmacokinet. 2006;45:385–99.
Stavchansky S. Scientific perspectives on extending the provision for waivers of in vivo bioavailability and bioequivalence studies for drug products containing high solubility-low permeability drugs (BCS-Class 3). AAPS J. 2008;10:300–5.
Yamashita S, Tachiki H. Analysis of risk factors in human bioequivalence study that incur bioinequivalence of oral drug products. Mol Pharmaceutics. 2009;6:48–59.
Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharmaceutics. 2004;1:85–96.
Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharmaceutics. 2006;3:631–43.
Oh DM, Curl RL, Amidon GL. Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm Res. 1993;10:264.
Winiwarter S, Ax F, Lennernäs H, Hallberg A, Pettersson C, Karlén A. Hydrogen bonding descriptors in the prediction of human in vivo intestinal permeability. J Mol Graph Model. 2003;21:273–87.
Winiwarter S, Bonham NM, Ax F, Hallberg A, Lennernas H, Karlen A. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J Med Chem. 1998;41:4939–49.
Kim JS, Mitchell S, Kijek P, Tsume Y, Hilfinger J, Amidon GL. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol Pharmaceutics. 2006;3:686–94.
WHO list of essential drugs 12th Edition. 2002. http://www.who.int/medicines/organization/par/edl/eml2002core.pdf
The top 200 prescriptions for 2002 by number of U.S. prescriptions dispensed.2002. http://www.rxlist.com/top200.htm.
Dahan A, Hoffman A. Enhanced gastrointestinal absorption of lipophilic drugs. In: Touitouand E, Barry BW, editors. Enhancement in drug delivery. Boca Raton: CRC press; 2006. p. 111–27.
Flanagan SD, Benet LZ. Net secretion of furosemide is subject to indomethacin inhibition, as observed in Caco-2 monolayers and excised rat jejunum. Pharm Res. 1999;16:221–4.
Young AM, Audus KL, Proudfoot J, Yazdanian M. Tetrazole compounds: the effect of structure and pH on Caco-2 cell permeability. J Pharm Sci. 2006;95:717–25.
Proposal to waive in vivo bioequivalence requirements for the WHO model list of essential medicines immediate release, solid oral dosage forms. http://www.who.int/medicines/services/expertcommittees/pharmprep/QAS04_109Rev1_Waive_invivo_bioequiv.pdf.
Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58:265–78.
Kim YH, Ramachandran C, Crippen GM, Takagi T, Bermejo M, Amidon GL. In silico approaches to prediction of permeability, solubility and BCS class: Provisional classification of the top-selling IR oral drug products in the United States, Great Britain, Spain, Japan and South Korea In Preparation, 2009.
Wuand C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.
Benet L, Amidon GL, Barends D, Lennernäs H, Polli J, Shah V, et al. The use of BDDCS in classifying the permeability of marketed drugs. Pharm Res. 2008;25:483–8.
Custodio JM, Wu C-Y, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008;60:717–33.
Chen M-L, Yu L. The use of drug metabolism for prediction of intestinal permeability. Mol Pharmaceutics. 2009;6:74–81.
Cao X, Yu LX, Barbaciru C, Landowski CP, Shin HC, Gibbs S, et al. Permeability dominates in vivo intestinal absorption of P-gp substrate with high solubility and high permeability. Mol Pharmaceutics. 2005;2:329–40.
Dahan A, Altman H. Food–drug interaction: grapefruit juice augments drug bioavailability—mechanism, extent and relevance. Eur J Clin Nutr. 2004;58:1.
Dahan A, Sabit H, Amidon GL. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. AAPS J. 2009;11:205–13.
Fernández-Teruel C, Nalda Molina R, González-Alvarez I, Navarro-Fontestad C, García-Arieta A, Casabó VG, et al. Computer simulations of bioequivalence trials: selection of design and analyte in BCS drugs with first-pass hepatic metabolism: linear kinetics (I). Eur J Pharm Sci. 2009;36:137–46.
Yu LX, Straughn AB, Faustino PJ, Yang Y, Parekh A, Ciavarella AB, et al. The effect of food on the relative bioavailability of rapidly dissolving immediate-release solid oral products containing highly soluble drugs. Mol Pharmaceutics. 2004;1:357–62.
Jantratid E, Prakongpan S, Dressman JB, Amidon GL, Junginger HE, Midha KK, et al. Biowaiver monographs for immediate release solid oral dosage forms: cimetidine. J Pharm Sci. 2006;95:974–84.
Kalantzi L, Reppas C, Dressman JB, Amidon GL, Junginger HE, Midha KK, et al. Biowaiver monographs for immediate release solid oral dosage forms: acetaminophen (paracetamol). J Pharm Sci. 2006;95:4–14.
Manzo RH, Olivera ME, Amidon GL, Shah VP, Dressman JB, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: amitriptyline hydrochloride. J Pharm Sci. 2006;95:966–73.
Polli JE, Yu LX, Cook JA, Amidon GL, Borchardt RT, Burnside BA, et al. Summary workshop report: biopharmaceutics classification system—implementation challenges and extension opportunities. J Pharm Sci. 2004;93:1375–81.
Hilfinger JM. BCS in drug discovery, development, and regulation. Mol Pharmaceutics. 2009;6:1–1.