Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Dự đoán tính đặc hiệu trong các tương tác protein coiled-coil bZIP
Tóm tắt
Chúng tôi giới thiệu một phương pháp dự đoán các tương tác protein-protein được trung gian bởi motif coiled-coil. Khi được thử nghiệm trên các tương tác giữa gần như tất cả các protein bZIP của người và nấm men, phương pháp của chúng tôi xác định 70% các tương tác mạnh trong khi vẫn đảm bảo rằng 92% dự đoán là chính xác. Hơn nữa, việc kiểm tra chéo cho thấy rằng việc bao gồm dữ liệu thực nghiệm bZIP cải thiện đáng kể hiệu suất. Phương pháp của chúng tôi có thể được sử dụng để dự đoán các tương tác bZIP trong các hệ gen khác và là một cách tiếp cận đầy hứa hẹn để dự đoán các tương tác coiled-coil nói chung.
Từ khóa
#tương tác protein-protein #bZIP #coiled-coil #dự đoán #hiệu suấtTài liệu tham khảo
Uetz P, Giot L, Cagney G, Mansfield T, Judson R, Knight J, Lockshon D, Narayan V, Srinivasan M, Pochart P, et al.: A comprehensive analysis of protein-protein interactions inS. cerevisiae.Nature 2000, 403:623–627.
Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome.Proc Natl Acad Sci USA 2001, 98:4569–4574.
Newman JRS, Wolf E, Kim PS: A computationally directed screen identifying interacting coiled coils fromSaccharomyces cerevisiae.Proc Natl Acad Sci USA 2000, 97:13203–13208.
Gavin A, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J, Michon A, Cruciat C, et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes.Nature 2002, 415:141–147.
Ho Y, Gruhler A, Heilbut A, Bader G, Moore L, Adams S, Millar A, Taylor P, Bennett K, Boutilier K, et al.: Systematic identification of protein complexes inSaccharomyces cerevisiaeby mass spectrometry.Nature 2002, 415:180–183.
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, et al.: Global analysis of protein activities using proteome chips.Science 2001, 293:2101–2105.
Lupas A, van Dyke M, Stock J: Predicting coiled coils from protein sequences.Science 1991, 252:1162–1164.
Berger B, Wilson DB, Wolf E, Tonchev T, Milla M, Kim PS: Predicting coiled coils using pairwise residue correlations.Proc Natl Acad Sci USA 1995, 92:8259–8263.
Wolf E, Kim PS, Berger B: Multicoil: a program for predicting two- and three-stranded coiled coils.Protein Sci 1997, 6:1179–1189.
Singh M, Berger B, Kim PS: Learncoil-VMF: computational evidence for coiled-coil-like motifs in many viral membrane-fusion proteins.J Mol Biol 1999, 290:1031–1044.
Delorenzi M, Speed T: An HMM model for coiled-coil domains and a comparison with PSSM-based predictions.Bioinformatics 2002, 18:617–625.
Woolfson DN, Alber T: Predicting oligomerization state of coiled coils.Protein Sci 1995, 4:1596–1607.
Harbury PB, Tidor B, Kim PS: Repacking protein cores with backbone freedom: structure prediction for coiled coils.Proc Natl Acad Sci USA 1995, 92:8408–8412.
Keating AE, Malashkevich V, Tidor B, Kim PS: Side-chain repacking calculations for predicting structures and stabilities of heterodimeric coiled coils.Proc Natl Acad Sci USA 2001, 98:14825–14830.
Havranek J, Harbury PB: Automated design of specificity in molecular recognition.Nat Struct Biol 2003, 10:45–52.
O'Shea E, Rutkowski R, Kim PS: Mechanism of specificity in the fos-jun oncoprotein heterodimer.Cell 1992, 68:699–708.
Harbury PB, Zhang T, Kim PS, Alber T: A switch between two-, three- and four-stranded coiled coils in GCN4 leucine zipper mutants.Science 1993, 262:1401–1407.
Vinson C, Hai T, Boyd S: Dimerization specificy of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design.Genes Dev 1993, 7:1047–1058.
Acharya A, Ruvinov S, Gal J, Moll JR, Vinson C: A heterodimerizing leucine zipper coiled coil system for examining the specificity of a position interactions: amino acids I, V, L, N, A, and K.Biochemistry 2002, 41:14122–14131.
Lumb K, Kim PS: A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil.Biochemistry 1995, 34:8642–8648.
Gonzalez L, Woolfson D, Alber T: Buried polar residues and structural specificity in the GCN4 leucine zipper.Nat Struct Biol 1996, 3:1011–1018.
Gonzalez L, Brown R, Richardson D, Alber T: Crystal structures of a single coiled-coil peptide in two oligomeric states reveal the basis for structural polymorphism.Nat Struct Biol 1996, 3:1002–1009.
Newman JRS, Keating AE: Comprehensive identification of human bZIP interactions using coiled-coil arrays.Science 2003, 300:2097–2101.
Singh M, Kim PS: Towards predicting coiled-coil protein interactions.In Proceedings of the 5th Annual International Conference on Computational Molecular Biology ACM 2001, 279–286.
Parry DAD, Crewther WG, Fraser RD, MacRae TP: Sequences of α-keratin: structural implication of the amino acid sequences of the type I and type II chain segments.J Mol Biol 1977, 113:449–454.
McLachlan A, Stewart M: Tropomyosin coiled-coil interactions: evidence for an unstaggered structure.J Mol Biol 1975, 98:293–304.
Fassler J, Landsman D, Acharya A, Moll JR, Bonovich M, Vinson C: bZIP proteins encoded by theDrosophilagenome: evaluation of potential dimerization partners.Genome Res 2002, 12:1190–1200.
Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene order: a fingerprint of proteins that physically interact.Trends Biochem Sci 1998, 23:324–328.
Overbeek R, Fonstein M, D'Souza M, Pusch G, Maltsev N: The use of gene clusters to infer functional coupling.Proc Natl Acad Sci USA 1999, 96:2896–2901.
Marcotte E, Pellegrini M, Ng H, Rice D, Yeates T, Eisenberg D: Detecting protein function and protein-protein interactions from genome sequences.Science 1999, 285:751–753.
Enright A, Iliopoulos I, Kyrpides N, Ouzounis C: Protein interaction maps for complete genomes based on gene fusion events.Nature 1999, 402:86–90.
Goh C, Bogan A, Joachimiak M, Walther D, Cohen F: Co-evolution of proteins with their interaction partners.J Mol Biol 2000, 299:283–293.
Ramani A, Marcotte E: Exploiting the co-evolution of interacting proteins to discover interaction specificity.J Mol Biol 2003, 327:273–284.
Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M, Greenblatt JF, Gerstein M: A Bayesian networks approach for predicting protein-protein interactions from genomic data.Science 2003, 302:449–453.
Vinson C, Myakishev M, Acharya A, Mir A, Moll JR, Bonovich M: Classification of human bZIP proteins based on dimerization properties.Mol Cell Biol 2002, 22:6321–6335.
O'Shea E, Klemm J, Kim PS, Alber T: X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil.Science 1991, 254:539–544.
Glover J, Harrison S: Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA.Nature 1995, 373:257–261.
Krylov D, Mikhailenko I, Vinson C: A thermodynamic scale for leucine zipper stability and dimerization specificity:eandginterhelical interactions.EMBO J 1994, 13:2849–2861.
Krylov D, Barchi J, Vinson C: Inter-helical interactions in the leucine zipper coiled coil dimer: pH and salt dependence of coupling energy between charged amino acids.J Mol Biol 1998, 279:959–972.
Vapnik V: Statistical Learning Theory New York: Wiley 1998.
Burges C: A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery 1998, 2:121–167.
Joachims T: Making large-scale SVM learning practical.In Advances in Kernel Methods: Support Vector Machines(Edited by: Schölkopf B, Burges C, Smola A). Cambridge: MIT Press 1999, 169–185.
Hurst H: Transcription factors 1: bZIP proteins.Protein Profile 1995, 2:101–168.
Moitra J, Szilak L, Krylov D, Vinson C: Leucine is the most stabilizing aliphatic amino acid in thedposition of a dimeric leucine zipper coiled coil.Biochemistry 1997, 36:12567–12573.
Jelesarov I, Bosshard HR: Thermodynamic characterization of the coupled folding and association of heterodimeric coiled coils (leucine zippers).J Mol Biol 1996, 263:344–358.
Tripet B, Wagschal K, Lavigne P, Mant C, Hodges R: Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position 'd'.J Mol Biol 2000, 300:377–402.
Akey DL, Malashkevich VN, Kim PS: Buried polar residues in coiled-coil interfaces.Biochemistry 2001, 40:6352–6360.
Hu J, O'Shea E, Kim PS, Sauer R: Sequence requirements for coiled coils: analysis with lambda repressor-GCN4 leucine zipper fusions.Science 1990, 250:1400–1403.
Hu J, Newell N, Tidor B, Sauer R: Probing the roles of residues at the e and g positions of the GCN4 leucine zipper by combinatorial mutagenesis.Protein Sci 1993, 2:1072–1084.
Zeng X, Zhu H, Lashuel H, Hu J: Oligomerization properties of GCN4 leucine zipper e and g mutants.Protein Sci 1997, 6:2218–2226.
Kammerer R, Frank S, Schulthess T, Landwehr R, Lustig A, Engel J: Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices.Biochemistry 1999, 38:13263–13269.
Porte D, Oertel-Buchheit P, John M, Granger-Schnarr M, Schnarr M: DNA binding and transactivation properties of fos variants with homodimerization capacity.Nucleic Acids Res 1997, 25:3026–3033.
Smeal T, Angel P, Meek J, Karin M: Different requirements for formation of Jun:Jun and Jun:Fos complexes.Genes Dev 1989, 3:2091–2100.
Amati B, Brooks M, Levy N, Littlewood T, Evan G, Land H: Oncogenic activity of the c-Myc protein requires dimerization with Max.Cell 1993, 72:233–245.
bZIP coiled-coil scoring form[http://compbio.cs.princeton.edu/bzip]