Practical considerations for navigating the regulatory landscape of non-clinical studies for clinical translation of radiopharmaceuticals

Springer Science and Business Media LLC - Tập 7 - Trang 1-29 - 2022
Aruna Korde1, Renata Mikolajczak2, Petra Kolenc3,4, Penelope Bouziotis5, Hadis Westin6, Mette Lauritzen7, Michel Koole8, Matthias Manfred Herth9,10, Manuel Bardiès11, Andre F. Martins12,13, Antonio Paulo14, Serge K. Lyashchenko15, Sergio Todde16, Sangram Nag17, Efthimis Lamprou18, Antero Abrunhosa19, Francesco Giammarile1, Clemens Decristoforo20
1Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Centre, Vienna, Austria
2Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
3Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
4Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
5National Centre for Scientific Research “Demokritos”, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, Athens, Greece
6Department of Immunology, Genetics and Pathology, Ridgeview Instruments AB, Uppsala Universitet, Uppsala, Sweden
7Bruker BioSpin MRI GmbH, Ettlingen, Germany
8Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, Louvain, Belgium
9Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
10Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
11Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, Montpellier, France
12Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tübingen, Tübingen, Germany
13Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
14Centro de Ciências E Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela Lrs, Lisbon, Portugal
15Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
16Department of Medicine and Surgery, University of Milano-Bicocca, Tecnomed Foundation, Milan, Italy
17Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
18Bioemtech, Lefkippos Attica Technology Park-N.C.S.R Demokritos, Athens, Greece
19ICNAS, CIBIT, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
20Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria

Tóm tắt

The development of radiopharmaceuticals requires extensive evaluation before they can be applied in a diagnostic or therapeutic setting in Nuclear Medicine. Chemical, radiochemical, and pharmaceutical parameters must be established and verified to ensure the quality of these novel products. To provide supportive evidence for the expected human in vivo behaviour, particularly related to safety and efficacy, additional tests, often referred to as “non-clinical” or “preclinical” are mandatory. This document is an outcome of a Technical Meeting of the International Atomic Energy Agency. It summarises the considerations necessary for non-clinical studies to accommodate the regulatory requirements for clinical translation of radiopharmaceuticals. These considerations include non-clinical pharmacology, radiation exposure and effects, toxicological studies, pharmacokinetic modelling, and imaging studies. Additionally, standardisation of different specific clinical applications is discussed. This document is intended as a guide for radiopharmaceutical scientists, Nuclear Medicine specialists, and regulatory professionals to bring innovative diagnostic and therapeutic radiopharmaceuticals into the clinical evaluation process in a safe and effective way.

Tài liệu tham khảo

21CFR 212. Current Good Manufacturing Practice for Positron Emission Tomography Drugs. [Internet]. [cited 2022 Jan 22]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=212 Amirrashedi M, Zaidi H, Ay MR. Advances in preclinical PET instrumentation. PET Clin. 2020;15(4):403–26. Andersson M, Johansson L, Eckerman K, Mattsson S. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Res. 2017;7(1):88. Annex 2 International Atomic Energy Agency and World Health Organization guideline on good manufacturing practices for radiopharmaceutical product [Internet]. WHO Technical Report Series, No. 1025, World Healt Organization; 2020 [cited 2022 Mar 7]. Available from: file:///C:/Users/decri/Zotero/storage/YXDN3ZKV/trs1025-annex2.pdf. Anonymous. ICH M3 (R2) Non-clinical safety studies for the conduct of human clinical trials pharmaceuticals [Internet]. EMA/CPMP/ICH/286/1995, European Medicines Agency. 2009 [cited 2021 Nov 18]. Available from: https://www.ema.europa.eu/en/ich-m3-r2-non-clinical-safety-studies-conduct-human-clinical-trials-pharmaceuticals. Anonymous. ICH S9 Non-clinical evaluation for anticancer pharmaceuticals [Internet]. EMA/CHMP/ICH/646107/2008, European Medicines Agency. 2010 [cited 2021 Nov 18]. Available from: https://www.ema.europa.eu/en/ich-s9-non-clinical-evaluation-anticancer-pharmaceuticals. Anonymous. ICH S7A Safety pharmacology studies for human pharmaceuticals [Internet]. CPMP/ICH/539/00, European Medicines Agency. 2001 [cited 2021 Nov 18]. Available from: https://www.ema.europa.eu/en/ich-s7a-safety-pharmacology-studies-human-pharmaceuticals. Anonymous. ICH S6 (R1) Preclinical safety evaluation of biotechnology-derived pharmaceuticals [Internet]. EMA/CHMP/ICH/731268/1998, European Medicines Agency. 2011 [cited 2021 Nov 18]. Available from: https://www.ema.europa.eu/en/ich-s6-r1-preclinical-safety-evaluation-biotechnology-derived-pharmaceuticals. Anonymous. Strategies to identify and mitigate risks for first-in-human early clinical trials with investigational medicinal products [Internet]. EMEA/CHMP/SWP/28367/07 Rev. 1, European Medicines Agency. 2018 [cited 2021 Nov 18]. Available from: https://www.ema.europa.eu/en/strategies-identify-mitigate-risks-first-human-early-clinical-trials-investigational-medicinal. Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular targeting of theranostic radionuclides. Front Pharmacol. 2018;9:996. Blanchard OL, Smoliga JM. Translating dosages from animal models to human clinical trials–revisiting body surface area scaling. FASEB J. 2015;29(5):1629–34. Buch K, Peters T, Nawroth T, Sänger M, Schmidberger H, Langguth P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay–a comparative study. Radiat Oncol. 2012;7:1. Busemann Sokole E, Płachcínska A, Britten A, EANM Physics Committee. Acceptance testing for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37(3):672–81. Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, et al. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab. 1993;13(1):24–42. Decristoforo C, Pfister J. In vitro studies with radiopharmaceuticals. In: Reference Module in Biomedical Sciences [Internet]. Elsevier; 2021 [cited 2021 Nov 28]. p. B9780128229606000000. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128229606000120 Directive 2001/83/EC of the European Parliament and of the Council [Internet]. Official Journal L 311, 28/11/2001 P. 0067-0128; OPOCE; [cited 2021 Feb 7]. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32001L0083:EN:HTML Directive 2004/10/EC of the European Parliament and of the Council of 11 February 2004 on the harmonisation of laws, regulations and administrative provisions relating to the application of the principles of good laboratory practice and the verification of their applications for tests on chemical substances (codified version) (Text with EEA relevance) [Internet]. 050, 32004L0010 Feb 20, 2004. Available from: http://data.europa.eu/eli/dir/2004/10/oj/eng Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes Text with EEA relevance. 47 EMA. Radiopharmaceuticals [Internet]. European Medicines Agency. 2018 [cited 2022 Feb 25]. Available from: https://www.ema.europa.eu/en/radiopharmaceuticals EUR-Lex-32013L0059-EN-EUR-Lex [Internet]. [cited 2022 Feb 25]. Available from: https://eur-lex.europa.eu/eli/dir/2013/59/oj European Commission, Directorate-General for Environment NS and Civil Protection. Guidance on medical exposures in medical and biomedical research. Luxembourg: OOPEC; 1999 FDA. Affairs O of R. Nonclinical Laboratories Inspected under Good Laboratory Practices [Internet]. FDA; 2021 [cited 2021 Nov 18]. Available from: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-references/nonclinical-laboratories-inspected-under-good-laboratory-practices Good Laboratory Practice (GLP)-OECD [Internet]. [cited 2021 Nov 18]. Available from: https://www.oecd.org/chemicalsafety/testing/good-laboratory-practiceglp.htm Guidance for preclinical studies with radiopharmaceuticals. IAEA radioisotopes and radiopharmaceuticals series [Internet]. 2021 [cited 2021 Nov 27]; [Preprint]. Available from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/52/073/52073217.pdf Guideline on the non-clinical requirements for radiopharmaceuticals [Internet]. EMA/CHMP/SWP/686140/2018 Nov 15, 2018 p. 10. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-non-clinical-requirements-radiopharmaceuticals-first-version_en.pdf Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21(6):635–52. Henderson VC, Kimmelman J, Fergusson D, Grimshaw JM, Hackam DG. Threats to validity in the design and conduct of preclinical efficacy studies: a systematic review of guidelines for in vivo animal experiments. PLoS Med. 2013;10(7):e1001489. Hildebrandt IJ, Su H, Weber WA. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J. 2008;49(1):17–26. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol. 2000;27(7):643–6. ICRU Report 67. Absorbed-Dose Specification in Nuclear Medicine–ICRU [Internet]. 2022 [cited 2022 Jan 7]. Available from: https://www.icru.org/report/absorbed-dose-specification-in-nuclear-medicine-report-67/ Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9. International Atomic Energy Agency, Asociacin Latinoamericana de Sociedades de Biologa y Medicina Nuclear, Asia Oceania Federation of Nuclear Medicine & Biology, European Association of Nuclear Medicine, Society of Nuclear Medicine and Molecular Imaging, World Federation of Nuclear Medicine and Biology. Good practice for introducing radiopharmaceuticals for clinical use. 2016. Ito H, Hietala J, Blomqvist G, Halldin C, Farde L. Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab. 1998;18(9):941–50. Janjigian YY, Viola-Villegas N, Holland JP, Divilov V, Carlin SD, Gomes-DaGama EM, et al. Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET. J Nucl Med. 2013;54(6):936–43. Kiessling F, Pichler BJ. Small animal imaging: basics and practical guide. Berlin: Springer Verlag; 2011. Kolenc Peitl P, Rangger C, Garnuszek P, Mikolajczak R, Hubalewska-Dydejczyk A, Maina T, et al. Clinical translation of theranostic radiopharmaceuticals: Current regulatory status and recent examples. J Label Comp Radiopharm. 2019;62(10):673–83. Koo V, Hamilton PW, Williamson K. Non-invasive in vivo imaging in small animal research. Cell Oncol. 2006;28(4):127–39. Koziorowski J, Behe M, Decristoforo C, Ballinger J, Elsinga P, Ferrari V, et al. Position paper on requirements for toxicological studies in the specific case of radiopharmaceuticals. EJNMMI Radiopharm Chem. 2017;1(1):1. Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy-a review. EJNMMI Radiopharm Chem. 2019;4(1):27. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4(3 Pt 1):153–8. Lassmann M, Chiesa C, Flux G, Bardiès M. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging. 2011;38(1):192–200. Lau J, Jacobson O, Niu G, Lin KS, Bénard F, Chen X. Bench to bedside: Albumin binders for improved cancer radioligand therapies. Bioconjug Chem. 2019;30(3):487–502. Lauber DT, Fülöp A, Kovács T, Szigeti K, Máthé D, Szijártó A. State of the art in vivo imaging techniques for laboratory animals. Lab Anim. 2017;51(5):465–78. Lesniak WG, Chu C, Jablonska A, Du Y, Pomper MG, Walczak P, et al. A distinct advantage to intraarterial delivery of 89Zr-bevacizumab in PET imaging of mice with and without osmotic opening of the blood-brain barrier. J Nucl Med. 2019;60(5):617–22. Lodge MA. Repeatability of SUV in oncologic 18F-FDG PET. J Nucl Med. 2017;58(4):523–32. Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol. 2000;27(7):661–70. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16(5):834–40. Loudos G, Georgiou M, Rouchota M, Papadimitroulas P, Fysikopoulos E. Benchtop systems for in vivo molecular screening of labeled compounds, as a tool to speed up drug research. Hell J Nucl Med. 2019;22(Suppl 2):183. Luurtsema G, Pichler V, Bongarzone S, Seimbille Y, Elsinga P, Gee A, et al. EANM guideline for harmonisation on molar activity or specific activity of radiopharmaceuticals: impact on safety and imaging quality. EJNMMI Radiopharm Chem. 2021;6(1):34. Mah LJ, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679–86. Mann T, Kurth J, Möller A, Förster J, Vollmar B, Krause BJ, et al. Continuous blood sampling in small animal positron emission tomography/computed tomography enables the Measurement of the arterial input function. JoVE. 2019;150:59701. Mauxion T, Barbet J, Suhard J, Pouget JP, Poirot M, Bardiès M. Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data. Med Phys. 2013;40(5):052501. McLaughlin WL. Reference dosimetry and measurement quality assurance. Int J Radiat Appl Instrum Part A Appl Radiat Isot. 1989;40(10–12):945–51. McParland BJ. Nuclear medicine radiation dosimetry: advanced theoretical principles. New York: Springer; 2010. p. 610. Meng Y, Reilly RM, Pezo RC, Trudeau M, Sahgal A, Singnurkar A, et al. MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases. Sci Transl Med. 2021;13(615):eabj4011. Microdose Radiopharmaceutical Diagnostic Drugs: Nonclinical Study Recommendations [Internet]. U.S. Food and Dreug Administration. FDA; 2018 [cited 2022 Mar 5]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/microdose-radiopharmaceutical-diagnostic-drugs-nonclinical-study-recommendations. Nakata N, Kobashi N, Okumura Y, Sato M, Matono M, Otsuki K, et al. Radiation dosimetry and efficacy of an 89Zr/225Ac-labeled humanized anti-MUC5AC antibody. Nucl Med Biol. 2022;108–109:33–43. Nock BA, Maina T, Krenning EP, de Jong M. ‘To serve and protect’: enzyme inhibitors as radiopeptide escorts promote tumor targeting. J Nucl Med. 2014;55(1):121–7. Nutrition C for FS and A. Redbook 2000: IV.B.1. General Guidelines for Designing and Conducting Toxicity Studies [Internet]. U.S. Food and Drug Administration. FDA; 2019 [cited 2022 Feb 25]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/redbook-2000-ivb1-general-guidelines-designing-and-conducting-toxicity-studies Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7. Pretto F, FitzGerald RE. In vivo safety testing of antibody drug conjugates. Regul Toxicol Pharmacol. 2021;122:104890. Research C for DE and nonclinical evaluation of late radiation toxicity of therapeutic radiopharmaceuticals [Internet]. U.S. Food and Drug Administration. FDA; 2020 [cited 2021 Nov 18]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/nonclinical-evaluation-late-radiation-toxicity-therapeutic-radiopharmaceuticals Research C for DE and oncology therapeutic radiopharmaceuticals: nonclinical studies and labeling recommendations guidance for industry [Internet]. U.S. Food and Drug Administration. 2020 [cited 2021 Nov 27]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/oncology-therapeutic-radiopharmaceuticals-nonclinical-studies-and-labeling-recommendations-guidance Research C for DE and. Codevelopment of Two or More New Investigational Drugs for Use in Combination [Internet]. U.S. Food and Drug Administration. FDA; 2020 [cited 2022 Feb 25]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/codevelopment-two-or-more-new-investigational-drugs-use-combination Research C for DE and. Exploratory IND Studies [Internet]. U.S. Food and Drug Administration. FDA; 2019 [cited 2022 Feb 25]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/exploratory-ind-studies Rouchota M, Adamiano A, Iafisco M, Fragogeorgi E, Pilatis I, Doumont G, et al. Optimization of in vivo studies by combining planar dynamic and tomographic imaging: workflow evaluation on a superparamagnetic nanoparticles system. Mol Imaging. 2021;2021:6677847. Schwarz SW, Decristoforo C. US and EU radiopharmaceutical diagnostic and therapeutic nonclinical study requirements for clinical trials authorizations and marketing authorizations. EJNMMI Radiopharm Chem. 2019;4(1):10. Schwarz SW, Decristoforo C, Goodbody AE, Singhal N, Saliba S, Ruddock P, et al. Harmonization of United States, European Union and Canadian first-in-human regulatory requirements for radiopharmaceuticals-is this possible? J Nucl Med. 2018. https://doi.org/10.2967/jnumed.118.209460. Sehlin D, Fang XT, Cato L, Antoni G, Lannfelt L, Syvänen S. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer’s disease. Nat Commun. 2016;7:10759. Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020;19(9):589–608. Shalgunov V, Xiong M, L’Estrade ET, Raval NR, Andersen IV, Edgar FG, et al. Blocking of efflux transporters in rats improves translational validation of brain radioligands. EJNMMI Res. 2020;10(1):124. Sharma SK, Lyashchenko SK, Park HA, Pillarsetty N, Roux Y, Wu J, et al. A rapid bead-based radioligand binding assay for the determination of target-binding fraction and quality control of radiopharmaceuticals. Nucl Med Biol. 2019;71:32–8. Smith H. (Eds). Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Oxford: Pergamon Press; (Ann. ICRP; vols 1–3). 1991. Stabin M, Farmer A. OLINDA/EXM 2.0: The new generation dosimetry modeling code. JNM. 2012;53(supplement 1):585. Subiel A, Ashmore R, Schettino G. Standards and methodologies for characterizing radiobiological impact of High-Z nanoparticles. Theranostics. 2016;6(10):1651–71. Syvänen S, Lindhe O, Palner M, Kornum BR, Rahman O, Långström B, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37(3):635–43. Takano A, Varrone A, Gulyás B, Salvadori P, Gee A, Windhorst A, et al. Guidelines to PET measurements of the target occupancy in the brain for drug development. Eur J Nucl Med Mol Imaging. 2016;43(12):2255–62. Todde S, Windhorst AD, Behe M, Bormans G, Decristoforo C, Faivre-Chauvet A, et al. EANM guideline for the preparation of an Investigational Medicinal Product Dossier (IMPD). Eur J Nucl Med Mol Imaging. 2014;41(11):2175–85. Tshibangu T, Cawthorne C, Serdons K, Pauwels E, Gsell W, Bormans G, et al. Automated GMP compliant production of [18F]AlF-NOTA-octreotide. EJNMMI Radiopharm Chem. 2020;5(1):4. US FDA Guidance. Oncology Therapeutic Radiopharmaceuticals: nonclinical Studies and Labeling Recommendations, Guidance for Industry [Internet]. [cited 2022 Jan 19]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/oncology-therapeutic-radiopharmaceuticals-nonclinical-studies-and-labeling-recommendations-guidance US FDA guidance. Microdose radiopharmaceutical diagnostic drugs: nonclinical study recommendations, guidance for industry. [Internet]. [cited 2022 Jan 19]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/microdose-radiopharmaceutical-diagnostic-drugs-nonclinical-study-recommendations Valentin J.. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103 [Internet]. Elsevier; (Ann. ICRP; vols 2–4). Available from: https://journals.sagepub.com/doi/pdf/https://doi.org/10.1177/ANIB_37_2-4 Vanhove C, Bankstahl JP, Krämer SD, Visser E, Belcari N, Vandenberghe S. Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. EJNMMI Phys. 2015;2(1):31. Zanotti-Fregonara P, Lammertsma AA, Innis RB. 11C dosimetry scans should be abandoned. J Nucl Med. 2021;62(2):158–9.