Vai trò tiềm năng của cinnamaldehyde và costunolide trong việc đối phó với hội chứng chuyển hóa do tiêu thụ fructose quá mức

Ayat S. Rashwan1, Marwa A. El-Beltagy1, Sherif Y. Saleh1, Ibrahim A. Ibrahim1
1Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, Egypt

Tóm tắt

Một trong những vấn đề sức khỏe cộng đồng nghiêm trọng trên thế giới là hội chứng chuyển hóa. Nó bao gồm béo phì tạng, rối loạn lipid máu, kháng insulin, tăng đường huyết và huyết áp cao. Là yếu tố góp phần vào hầu hết các dấu hiệu cổ điển của hội chứng chuyển hóa, fructose được xem là lựa chọn lý tưởng. Có một số hạn chế với các loại thuốc hiện có để điều trị kháng insulin. Thực vật vẫn là nguồn chính của hầu hết các loại thuốc hiện có. Cinnamaldehyde (CNA) là một thành phần hoạt tính của Cinnamomum zeylanicum. Costunolide (CE) là lactone sesquiterpene tự nhiên, là hợp chất sinh học chính của Saussurea lappa. Mục tiêu chính của nghiên cứu này là điều tra tác động của tác nhân điều trị tiểu đường tổng hợp (metformin) so với các thành phần tự nhiên (cinnamaldehyde, costunolide) sau khi phát triển một mô hình đáng tin cậy cho kháng insulin bằng cách sử dụng chế độ ăn nhiều fructose (HFD). Kết quả cho thấy HFD làm tăng glucose huyết tương, insulin, hemoglobin glycosyl hóa, HbA1c, cholesterol toàn phần huyết thanh, LDL-cholesterol, triglyceride, ALT, AST, creatinine, và acid uric. Hơn nữa, HFD làm giảm mức glutathione khử trong gan và superoxide dismutase. Trong khi việc điều trị bằng đường miệng các hợp chất cinnamaldehyde và costunolide giảm đáng kể glucose huyết tương, HbA1c, cholesterol toàn phần, LDL-cholesterol, triglyceride và làm tăng mức glutathione khử trong gan và hoạt động superoxide dismutase. Ngoài ra, cinnamaldehyde và costunolide đã khôi phục những mức độ plasma bị thay đổi của ALT, AST, creatinine và acid uric về bình thường. Kết quả của nghiên cứu thực nghiệm này cho thấy rằng cinnamaldehyde và costunolide có thể được sử dụng như những loại thuốc an toàn để điều trị các bất thường khác nhau của hội chứng chuyển hóa.

Từ khóa

#hội chứng chuyển hóa #cinnamaldehyde #costunolide #kháng insulin #fructose

Tài liệu tham khảo

Abdelmageed ME, Shehatou GS, Abdelsalam RA, Suddek GM, Salem HA (2018) Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn-Schmiedeberg’s Archives of Pharmacology. https://doi.org/10.1007/s00210-018-1583-4 Ahima RS (2016) Metabolic syndrome a comprehensive textbook Ahmed MA, Ali NA, Elbast SAA, Mohamed* MA (2018) Rice bran oil ameliorates hepatic insulin resistance in fructose fed-rats. The Egyptian Journal of Hospital Medicine 71:2885–2891 Anand P, Murali KY, Tandon V, Murthy PS, Chandra R (2010) Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chemico-Biological Interactions 186:72–81. https://doi.org/10.1016/j.cbi.2010.03.044 Ashwini S, Bobby Z, Sridhar M, Cleetus C (2017) Insulin Plant (Costus pictus) extract restores thyroid hormone levels in experimental hypothyroidism. Pharmacognosy Research 9:51. https://doi.org/10.4103/0974-8490.199766 Bagul PK, Middela H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S, Banerjee SK (2012) Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacological Research 66:260–268. https://doi.org/10.1016/j.phrs.2012.05.003 Berger S, Tietz NW (eds) (1976) Fundamentals of clinical chemistry, 2d. Saunders, Philadelphia Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61:882–888 Caliceti C, Calabria D, Roda A, Cicero A (2017) Fructose intake, serum uric acid, and cardiometabolic disorders: a critical review. Nutrients 9:395. https://doi.org/10.3390/nu9040395 Chen Y-F, Wang Y-W, Huang W-S, Lee M-M, Wood WG, Leung Y-M, Tsai H-Y (2016) Trans-cinnamaldehyde, an essential oil in cinnamon powder, ameliorates cerebral ischemia-induced brain injury via inhibition of neuroinflammation through attenuation of iNOS, COX-2 expression and NFκ-B signaling pathway. NeuroMolecular Medicine 18:322–333. https://doi.org/10.1007/s12017-016-8395-9 Correia S, Carvalho C, Santos M, Seica R, Oliveira C, Moreira P (2008) Mechanisms of action of metformin in type 2 diabetes and associated complications: an overview. Mini-Reviews in Medicinal Chemistry 8:1343–1354. https://doi.org/10.2174/138955708786369546 Dichtwald S, Weinbroum AA, Sorkine P, Ekstein MP, Dahan E (2012) Metformin-associated lactic acidosis following acute kidney injury. Efficacious treatment with continuous renal replacement therapy. Diabetic Medicine 29:245–250. https://doi.org/10.1111/j.1464-5491.2011.03474.x DiNicolantonio JJ, O’Keefe JH, Lucan SC (2015) Added fructose. Mayo Clinic Proceedings 90:372–381. https://doi.org/10.1016/j.mayocp.2014.12.019 Eidi A, Mortazavi P, Bazargan M, Zaringhalam J (2012) Hepatoprotective activity of cinnamon ethanolic extract against CCL4-induced liver injury in rats. EXCLI Journal 13 El Messaoudi S, Rongen GA, Riksen NP (2013) Metformin therapy in diabetes: the role of cardioprotection. Current Atherosclerosis Reports 15. https://doi.org/10.1007/s11883-013-0314-z Eliza J, Daisy P, Ignacimuthu S (2010) Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz) Sm. Chemico-Biological Interactions 188:467–472. https://doi.org/10.1016/j.cbi.2010.08.002 Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V (2009) Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats. Chemico-Biological Interactions 179:329–334. https://doi.org/10.1016/j.cbi.2008.10.017 Findlay JWA, Dillard RF (2007) Appropriate calibration curve fitting in ligand binding assays. AAPS J 9:E260–E267. https://doi.org/10.1208/aapsj0902029 Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry 18:499–502 Gireesh G, Thomas SK, Joseph B, Paulose CS (2009) Antihyperglycemic and insulin secretory activity of Costus pictus leaf extract in streptozotocin induced diabetic rats and in in vitro pancreatic islet culture. Journal of Ethnopharmacology 123:470–474. https://doi.org/10.1016/j.jep.2009.03.026 Greenfield JR, Campbell LV (2004) Insulin resistance and obesity. Clinics in Dermatology, Obesity 22:289–295. https://doi.org/10.1016/j.clindermatol.2004.01.011 Guo X, Sun W, Huang L, Wu L, Hou Y, Qin L, Liu T (2017) Effect of cinnamaldehyde on glucose metabolism and vessel function. Medical Science Monitor 23:3844–3853. https://doi.org/10.12659/MSM.906027 Hasanvand A, Amini-Khoei H, Jahanabadi S, Mehr SE, Dehpour AR (2018) Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through activation of AMPK signaling pathway. Journal of Nephropathology:7 Hininger-Favier I, Benaraba R, Coves S, Anderson RA, Roussel A-M (2009) Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. Journal of the American College of Nutrition 28:355–361. https://doi.org/10.1080/07315724.2009.10718097 Huang D-W, Chang W-C, Wu JS-B, Shih R-W, Shen S-C (2016) Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutrition Research 36:150–160. https://doi.org/10.1016/j.nutres.2015.10.001 JAFFE M (1886) Ueber den Niederschlag welchen Pikrinsaure in normalen Harn erzeugt und uber eine neue Reaction des Kreatinins. Z Physiol Chem 10:391–400 Johnson RJ, Sanchez-Lozada LG, Nakagawa T (2010a) The effect of fructose on renal biology and disease. Journal of the American Society of Nephrology 21:2036–2039. https://doi.org/10.1681/ASN.2010050506 Johnson RJ, Sanchez-Lozada LG, Nakagawa T (2010b) The effect of fructose on renal biology and disease. Journal of the American Society of Nephrology 21:2036–2039. https://doi.org/10.1681/ASN.2010050506 Kaur J (2014) A comprehensive review on metabolic syndrome. Cardiology Research and Practice 2014:1–21. https://doi.org/10.1155/2014/943162 Khare P, Jagtap S, Jain Y, Baboota RK, Mangal P, Boparai RK, Bhutani KK, Sharma SS, Premkumar LS, Kondepudi KK, Chopra K, Bishnoi M (2016) Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. Biofactors 42:201–211. https://doi.org/10.1002/biof.1265 Khouri H, Collin F, Bonnefont-Rousselot D, Legrand A, Jore D, Gardes-Albert M (2004) Radical-induced oxidation of metformin. European Journal of Biochemistry 271:4745–4752. https://doi.org/10.1111/j.1432-1033.2004.04438.x Kretowicz M, Johnson RJ, Ishimoto T, Nakagawa T, Manitius J (2011) The impact of fructose on renal function and blood pressure. International Journal of Nephrology 2011:1–5. https://doi.org/10.4061/2011/315879 Lee, Y.-S., Son, E., Kim, S.-H., Lee, Y.M., Kim, O.S., Kim, D.-S., 2017. Synergistic uric acid-lowering effects of the combination of Chrysanthemum indicum linne flower and Cinnamomum cassia (L.) J. Persl Bark Extracts. Evid Based Complement Alternat Med 2017. https://doi.org/10.1155/2017/9764843 Liu I-M, Tzeng T-F, Liou S-S, Lan T-W (2007) Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sciences 81:1479–1488. https://doi.org/10.1016/j.lfs.2007.08.045 Lv W, Wen J, Li L, Sun R, Wang J, Xian Y, Cao C, Wang Y, Gao Y (2012) The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Research 1444:11–19. https://doi.org/10.1016/j.brainres.2012.01.028 Ma J, Yu H, Liu J, Chen Y, Wang Q, Xiang L (2015) Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin. European Journal of Pharmacology 764:599–606. https://doi.org/10.1016/j.ejphar.2015.06.010 Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez J-P, Lee H-Y, Cline GW, Samuel VT, Kibbey RG, Shulman GI (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546. https://doi.org/10.1038/nature13270 Maritim AC, Sanders RA, Watkins JB (2003) Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J. Nutr. Biochem. 14:288–294 Meddah B, Ducroc R, El Abbes Faouzi M, Eto B, Mahraoui L, Benhaddou-Andaloussi A, Martineau LC, Cherrah Y, Haddad PS (2009) Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. Journal of Ethnopharmacology 121:419–424. https://doi.org/10.1016/j.jep.2008.10.040 National Research Council (U.S.) (1995) Nutrient requirements of laboratory animals, 4th rev. Nutrient requirements of domestic animals. National Academy of Sciences, Washington, D.C. Niknezhad F, Sayad-Fathi S, Karimzadeh A, Ghorbani-Anarkooli M, Yousefbeyk F, Nasiri E (2019) Improvement in histology, enzymatic activity, and redox state of the liver following administration of Cinnamomum zeylanicum bark oil in rats with established hepatotoxicity. Anat Cell Biol 52:302–311. https://doi.org/10.5115/acb.18.180 Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46:849–854 Ogawa K, Ito M (2016) Appetite-enhancing effects of trans-cinnamaldehyde, benzylacetone and 1-phenyl-2-butanone by Inhalation. Planta Medica 82:84–88. https://doi.org/10.1055/s-0035-1558087 Qi L-W, Liu E-H, Chu C, Peng Y-B, Cai H-X, Li P (2010) Anti-diabetic agents from natural products — an update from 2004 to 2009. Current Topics in Medicinal Chemistry 10:434–457. https://doi.org/10.2174/156802610790980620 Ramesh B, Saralakumari D (2012) Antihyperglycemic, hypolipidemic and antioxidant activities of ethanolic extract of Commiphora mukul gum resin in fructose-fed male Wistar rats. Journal of Physiology and Biochemistry 68:573–582. https://doi.org/10.1007/s13105-012-0175-x Rasul A, Parveen S, Ma T (2012) Costunolide: a novel anti-cancer sesquiterpene lactone. Bangladesh Journal of Pharmacology 7. https://doi.org/10.3329/bjp.v7i1.10066 Saisho Y (2015) Metformin and inflammation: its potential beyond glucose-lowering effect. Endocrine, Metabolic & Immune Disorders-Drug Targets 15:196–205. https://doi.org/10.2174/1871530315666150316124019 Segal MS, Gollub E, Johnson RJ (2007) Is the fructose index more relevant with regards to cardiovascular disease than the glycemic index? European Journal of Nutrition 46:406–417. https://doi.org/10.1007/s00394-007-0680-9 Sharma UK, Kumar R, Ganguly R, Gupta A, Sharmaand AK, Pandey AK (2018) Cinnamaldehyde, an active component of cinnamon provides protection against food colour induced oxidative stress and hepatotoxicity in albino Wistar rats. Vegetos- An International Journal of Plant Research 31:123. https://doi.org/10.5958/2229-4473.2018.00063.0 Sohrevardi SM, Nosouhi F, Hossein Khalilzade S, Kafaie P, Karimi-Zarchi M, Halvaei I, Mohsenzadeh M (2016) Evaluating the effect of insulin sensitizers metformin and pioglitazone alone and in combination on women with polycystic ovary syndrome: an RCT. Int J Reprod Biomed (Yazd) 14:743–754 Subash Babu P, Prabuseenivasan S, Ignacimuthu S (2007) Cinnamaldehyde—a potential antidiabetic agent. Phytomedicine 14:15–22. https://doi.org/10.1016/j.phymed.2006.11.005 Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22:158–161 Villegas LR, Rivard CJ, Hunter B, You Z, Roncal C, Joy MS, Le MT (2018) Effects of fructose-containing sweeteners on fructose intestinal, hepatic, and oral bioavailability in dual-catheterized rats. PLOS ONE 13:e0207024. https://doi.org/10.1371/journal.pone.0207024 Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clinical Science 122:253–270. https://doi.org/10.1042/cs20110386 Waisundara VY, Watawana MI, Jayawardena N (2015) Costus speciosus and Coccinia grandis : traditional medicinal remedies for diabetes. South African Journal of Botany 98:1–5. https://doi.org/10.1016/j.sajb.2015.01.012 Wani KD, Kadu BS, Mansara P, Gupta P, Deore AV, Chikate RC, Poddar P, Dhole SD, Kaul-Ghanekar R (2014) Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PLOS ONE 9:e107315. https://doi.org/10.1371/journal.pone.0107315 Wei Z, Yan-cheng X, Fang-jian G, Ye M, Ming-li L (n.d.) Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chinese Medical Journal 6 Yanardag R, Ozsoy-Sacan O, Bolkent S, Orak H, Karabulut-Bulan O (2005) Protective effects of metformin treatment on the liver injury of streptozotocin-diabetic rats. Human & Experimental Toxicology 24:129–135. https://doi.org/10.1191/0960327104ht507oa Yang X, Xu Z, Zhang C, Cai Z, Zhang J (2017) Metformin, beyond an insulin sensitizer, targeting heart and pancreatic β cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1863:1984–1990. https://doi.org/10.1016/j.bbadis.2016.09.019 Yaribeygi H, Simental-Mendía LE, Butler AE, Sahebkar A (2018) Protective effects of plant-derived natural products on renal complications. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.27950 Zhang D-M, Jiao R-Q, Kong L-D (2017) High dietary fructose: direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients 9. https://doi.org/10.3390/nu9040335 Zhu R, Liu H, Liu C, Wang L, Ma R, Chen B, Li L, Niu J, Fu M, Zhang D, Gao S (2017) Cinnamaldehyde in diabetes: a review of pharmacology, pharmacokinetics and safety. Pharmacological Research 122:78–89. https://doi.org/10.1016/j.phrs.2017.05.019