Potential of some microbial isolates on diesel hydrocarbons removal, bio surfactant production and biofilm formation
Tóm tắt
Potential of Arthrobacter citreus B27Pet, Bacillus thuringiensis B48Pet and Candida catnulata to produce biosurfactant using four different carbon sources (naphthalene, hexadecane, diesel and petroleum crude oil) was investigated. Removal of petroleum crude oil from aqueous culture and degradation of diesel were also determined using single and mixed culture of strains. The biofilm existence in single and mixed culture of strains was considered using naphthalene, hexadecane and diesel in culture medium. Cell surface hydrophobicity of A. citreus was higher than other isolates which also showed maximum surface tension reduction and emulsification index. As a whole, remarkable biosurfactant production occurred using petroleum crude oil as a carbon source in medium. A. citreus was found to be more robust than other tested strains in removal efficiency of crude oil due to its biosurfactant production capability. Statistically significant positive correlation was observed between biofilm existence and surface tension using diesel and hexadecane as carbon source. Overall diesel biodegradation efficiency by the mix culture of three applied strains was about 75% within a short period of time (10 days) which was accompanied with high biofilm production.
Tài liệu tham khảo
Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E. Petroleum hydrocarbon contamination in terrestrial ecosystems—fate and microbial responses. Molecules. 2019;24(18): 3400.
Demirbas A, Taylan O. Removing of resins from crude oils. Pet Sci Technol. 2016;34(8):771–7.
Khalid FE, Lim ZS, Sabri S, Gomez-Fuentes C, Zulkharnain A, Ahmad SA. Bioremediation of diesel contaminated marine water by bacteria: a review and bibliometric analysis. J Mar Sci and Eng. 2012;9(2):155.
Dzionek A, Wojcieszyńska D, Guzik U. Natural carriers in bioremediation: a review. Electron J Biotechnol. 2016;23:28–36.
Guerra AB, Oliveira JS, Silva-Portela RC, Araujo W, Carlos AC, Vasconcelos ATR, et al. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environ Pollut. 2018;235:869–80.
Li S, Pi Y, Bao M, Zhang C, Zhao D, Li Y, Sun P, Lu J. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons. Mar Pollut Bull. 2015;101:219–25.
Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil. Environ Pollut. 2005;133:71–84.
Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus, sp. strain TA6. Colloids Surf B. 2011;82:477–82.
Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S. Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterior Biodegrad. 2013;81:28–34.
Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv. 2010;28:436–50.
Gargouri B, Mhiri N, Karray F, Aloui F, Sayadi S. Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. Biomed Res Int. 2015;2015:929424.
Karimi M, Hassanshahian M. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman. Braz J Microbiol. 2016;47:18–24.
Hashem M, Alamri SA, Al-Zomyh SS, Alrumman SA. Biodegradation and detoxification of aliphatic and aromatic hydrocarbons by new yeast strains. Ecotoxicol Environ Saf. 2018;151:28–34.
Hesham AEL, Alrumman SA, ALQahtani ADS. Degradation of toluene hydrocarbon by isolated yeast strains: molecular genetic approaches for identification and characterization. Russ J Genet. 2018;54(8):933–43.
Babaei F, Habibi A. Fast biodegradation of diesel hydrocarbons at high concentration by the sophorolipid-producing yeast Candida catenulata KP324968. Microb Physiol. 2018;28(5):240–54.
Gholami F, Habibi A, Pakdel S, Beheshti Ale Agha A, Sharifi R. Biodegradation of naphthalene and hexadecane by indigenous isolated Bacillus thuringiensis. J Pet Res. 2022;32:157–67 (In persian with english abstract).
O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;47:2437.
D’Ugo E, Bertuccini L, Spadaro F, Giuseppetti R, Iosi F, Santavenere F, Giuliani F, Gricia M, Rodomonte A, Lovecchio N, Mukherjee A. Electrogenic and hydrocarbonoclastic biofilm at the oil-water interface as microbial responses to oil spill. Water Res. 2021;197:117092.
Klein B, Bouriat P, Goulas P, Grimaud R. Behavior of Marinobacter hydrocarbonoclasticus SP17 cells during initiation of biofilm formation at the alkane–water interface. Biotechnol Bioeng. 2010;105(3):461–8.
Dasgupta D, Ghosh R, Sengupta TK. Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN Biotechnol. 2013;2013:250749.
Jamali S, Gharaei M, Abbasi S. Identification of yeast species from uncultivated soils by sequence analysis of the hypervariable D1/D2 domain of LSU–rDNA gene in Kermanshah province, Iran. Mycol Iran. 2016;3(2):87–98.
Cappello S, Santisi S, Calogero R, Hassanshahian M, Yakimov MM. Characterisation of oil-degrading bacteria isolated from bilge water. Water Air Soil Pollut. 2012;223:3219–26.
Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ. Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods. 2004;56(3):339–47.
Camacho-Chab JC, Guézennec J, Chan-Bacab MJ, Ríos-Leal E, Sinquin C, Muñiz-Salazar R, la Rosa-García D, Del CS, Reyes-Estebanez M, Ortega-Morales BO. Emulsifying activity and stability of a non-toxic bioemulsifier synthesized by Microbacterium sp. MC3B-10. Int J Mol Sci. 2013;14(9):18959–72.
Viramontes-Ramos S, Portillo-Ruiz MC, Ballinas-Casarrubias MDL, Torres-Muñoz JV, Rivera-Chavira BE, Nevárez-Moorillón GV. Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil. Braz J Microbiol. 2010;41(3):668–75.
Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol lett. 1980;9(1):29–33.
Latha K. Bacterial degradation of crude oil by gravimetric analysis. Eur J Exp Biol. 2012;3(5):2789–95.
Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO. Microbial degradation of petroleum in a polluted tropical stream. World J Microbiol Biotechnol. 2007;23:1149–59.
Michaud L, Giudice AL, Saitta M, De Domenico M, Bruni V. The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Mar Pollut Bull. 2004;49(5–6):405–9.
Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol. 2018;9: 2885.
Franzetti A, Gandolfi I, Bestetti G, Smyth TJ, Banat IM. Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol. 2010;112(6):617–27.
Heipieper J, Cornelissen S, Pepi M. Surface properties and cellular energetics of bacteria in response to the presence of hydrocarbons. In: Handbook of hydrocarbon and lipid Microbiology. Heidelberg, Berlin: Springer; 2010. p. 1615–24.
Abbasnezhad H, Gray M, Foght JM. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol. 2011;92:653–75.
Liu X, Sheng G, Yu H. Physicochemical characteristics of microbial granules. Biotechnol Adv. 2009;27:1061–70.
Kobayashi H, Takami H, Hirayama H, Kobata K, Usami R, Horikoshi K. Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. Bacteriology. 1999;181:4493–8.
Tribelli PM, Di Martino C, López NI, Iustman LJR. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. Biodegradation. 2012;23(5):645–51.
Walter V, Syldatk C, Hausmann R. Screening concepts for the isolation of biosurfactant producing microorganisms. In: Ramkrishna S, editor. Biosurfactants, vol. 672. New York: Springer; 2010. p. 1–13.
Rodrigues LR, Teixeira JA, van der Mei HC, Oliveira R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B: Biointerfaces. 2006;49(1):79–86.
Barakat KM, Hassan SW, Darwesh OM. Biosurfactant production by haloalkaliphilic Bacillus strains isolated from Red Sea, Egypt. Egypt J Aquat Res. 2017;43(3):205–11.
Santos ECLD, Miranda DADR, Silva ALDS, López AMQ. Biosurfactant production by Bacillus strains isolated from sugar cane mill wastewaters. Braz Arch Biol Technol. 2019;62:62.
John WC, Ogbonna IO, Gberikon GM, Iheukwumere CC. Screening and characterization of Biosurfactant-producing Bacillus species isolated from contaminated soils in Makurdi Metropolis. Niger J Biotechnol. 2020;37(2):165–76.
Matvyeyeva OL, Vasylchenko О, Aliievа OR. Microbial biosurfactants role in oil products biodegradation. Int J Environ Bioremediat Biodegrad. 2014;2(2):69–74.
Rani M, Weadge JT, Jabaji S. Isolation and characterization of biosurfactant-producing bacteria from oil well batteries with antimicrobial activities against food-borne and plant pathogens. Front Microbiol. 2020;11: 64.
Karigar C, Mahesh A, Nagenahalli M, Yun DJ. Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation. 2006;17(1):47–55.
Ron EZ, Rosenberg E. Biosurfactants and oil bioremediation. Curr Opin Biotechnol. 2002;13(3):249–52.
Patowary R, Patowary K, Kalita MC, Deka S. Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. Int Biodeter Biodegr. 2018;129:50–60.
Zhou J, Gao P, Dai X, Cui X, Tian H, Xie J, Li G, Ma T. Heavy hydrocarbon degradation of crude oil by a novel thermophilic Geobacillus stearothermophilus strain A-2. Biodeter Biodegr. 2018;126:224–30.
Hou N, Zhang N, Jia T, Sun Y, Dai Y, Wang Q, et al. Biodegradation of phenanthrene by biodemulsifier-producing strain Achromobacter sp. LH-1 and the study on its metabolisms and fermentation kinetics. Ecotoxicol Environ Saf. 2018;163:205–14.
Varjani SJ, Upasani VN. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad. 2017;120:71–83.
Kleindienst S, Paul JH, Joye SB. Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol. 2015;13:388–96.
Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, et al. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci U S A. 2015;112:14900–5.
Liu S, Guo C, Liang X, Wu F, Dang Z. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicol Environ Saf. 2016;129:210–8.
Lominchar MA, Santos A, de Miguel E, Romero A. Remediation of aged diesel contaminated soil by alkaline activated persulfate. Sci Total Environ. 2018;41–48:622–33.
Meliani A, Bensoltane A. Enhancement of hydrocarbons degradation by use of Pseudomonas biosurfactants and biofilms. J Pet Environ Biotechnol. 2014;5(1):1.
Di Martino C, López NI, Iustman LJR. Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Int Biodeterior Biodegrad. 2012;67:15–20.
Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microb Methods. 2000;40(2):175–9.
Abdulrasheed M, Zakaria NN, Roslee AFA, Shukor MY, Zulkharnain A, Napis S, Convey P, Alias SA, Gonzalez-Rocha G, Ahmad SA. Biodegradation of diesel oil by cold-adapted bacterial strains of Arthrobacter spp. from Antarctica. Antarct Sci. 2020;32(5):341–53.
Al-Awadhi H, Al-Hasan RH, Sorkhoh NA, Salamah S, Radwan SS. Establishing oil-degrading biofilms on gravel particles and glass plates. Int biodeterior biodegrad. 2003;51(3):181–5.
Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the ″House of Biofilm cells″. Bacteriology. 2007;189(22):7945–7.
Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33.
Decho AW. Microbial biofilms in intertidal systems: an overview. Cont Shelf Res. 2000;20(10–11):1257–73.
Chandran P, Das N. Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels. Biodegradation. 2011;22(6):1181–9.
Sharma A, Kumar P, Rehman MB. Biodegradation of diesel hydrocarbon in soil by bioaugmentation of Pseudomonas aeruginosa: a laboratory scale study. Int J Environ Bioremed Biodegrad. 2014;2(4):202–12.
Li J, De Toledo RA, Shim H. Multivariate optimization for the simultaneous bioremoval of BTEX and chlorinated aliphatic hydrocarbons by Pseudomonas plecoglossicida. J Hazard Mater. 2017;321:238–46.
Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A. Phylogenetic and functional diversity of alkane degrading bacteria associated with italian ryegrass (Lolium multiflorum) and birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater. 2010;184(1–3):523–32.
Plotnikova EG, Yastrebova OV, Anan’ina LN, Dorofeeva LV, Lysanskaya V, Demakov VA. Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons. Russian J Ecol. 2011;42:502–9.