Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

Springer Science and Business Media LLC - Tập 12 - Trang 1-14 - 2012
Anne Richter1, Mayuko Kurome1,2, Barbara Kessler1, Valeri Zakhartchenko1, Nikolai Klymiuk1, Hiroshi Nagashima2, Eckhard Wolf1,2, Annegret Wuensch1
1Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
2Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan

Tóm tắt

Somatic cell nuclear transfer (SCNT) is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs) as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs) and porcine ear fibroblasts (PEFs) could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

Tài liệu tham khảo

Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, Wolf E: Transgenic pigs as models for translational biomedical research. J Mol Med. 2010, 88: 653-664. 10.1007/s00109-010-0610-9. Lunney JK: Advances in swine biomedical model genomics. Int J Biol Sci. 2007, 3: 179-184. Klymiuk N, Aigner B, Brem G, Wolf E: Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev. 2010, 77: 209-221. Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G: Transgenic technology in farm animals–progress and perspectives. Exp Physiol. 2000, 85: 615-625. 10.1017/S0958067000021102. Robl JM, Wang Z, Kasinathan P, Kuroiwa Y: Transgenic animal production and animal biotechnology. Theriogenology. 2007, 67: 127-133. 10.1016/j.theriogenology.2006.09.034. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, et al: Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A. 2011, 108: 12013-12017. 10.1073/pnas.1106422108. Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, et al: Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest. 2008, 118: 1571-1577. 10.1172/JCI34773. Klymiuk N, Mundhenk L, Kraehe K, Wuensch A, Plog S, Emrich D, Langenmayer MC, Stehr M, Holzinger A, Kroner C, et al: Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med (Berl). 2012, 90: 597-608. 10.1007/s00109-011-0839-y. Klymiuk N, van Buerck L, Bahr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, et al: Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes. 2012, 61: 1527-1532. 10.2337/db11-1325. Klymiuk N, Bocker W, Schonitzer V, Bahr A, Radic T, Frohlich T, Wunsch A, Kessler B, Kurome M, Schilling E, et al: First inducible transgene expression in porcine large animal models. FASEB J. 2012, 26: 1086-1099. 10.1096/fj.11-185041. Campbell KH, Alberio R, Choi I, Fisher P, Kelly RD, Lee JH, Maalouf W: Cloning: eight years after dolly. Reprod Domest Anim. 2005, 40: 256-268. 10.1111/j.1439-0531.2005.00591.x. Kumar BM, Jin HF, Kim JG, Ock SA, Hong Y, Balasubramanian S, Choe SY, Rho GJ: Differential gene expression patterns in porcine nuclear transfer embryos reconstructed with fetal fibroblasts and mesenchymal stem cells. Dev Dyn. 2007, 236: 435-446. 10.1002/dvdy.21042. Jin HF, Kumar BM, Kim JG, Song HJ, Jeong YJ, Cho SK, Balasubramanian S, Choe SY, Rho GJ: Enhanced development of porcine embryos cloned from bone marrow mesenchymal stem cells. Int J Dev Biol. 2007, 51: 85-90. 10.1387/ijdb.062165hj. Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares DL, et al: Cloned pigs produced by nuclear transfer from adult somatic cells. Nature. 2000, 407: 86-90. 10.1038/35024082. Petersen B, Lucas-Hahn A, Oropeza M, Hornen N, Lemme E, Hassel P, Queisser AL, Niemann H: Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells. 2008, 10: 355-362. 10.1089/clo.2008.0026. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC: Pig cloning by microinjection of fetal fibroblast nuclei. Science. 2000, 289: 1188-1190. 10.1126/science.289.5482.1188. Kurome M, Ueda H, Tomii R, Naruse K, Nagashima H: Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer. Transgenic Res. 2006, 15: 229-240. 10.1007/s11248-006-0004-5. Yin XJ, Tani T, Yonemura I, Kawakami M, Miyamoto K, Hasegawa R, Kato Y, Tsunoda Y: Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol Reprod. 2002, 67: 442-446. 10.1095/biolreprod67.2.442. Chen CA, Okayama H: Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988, 6: 632-638. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M: Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987, 84: 7413-7417. 10.1073/pnas.84.21.7413. Orth P, Weimer A, Kaul G, Kohn D, Cucchiarini M, Madry H: Analysis of novel nonviral gene transfer systems for gene delivery to cells of the musculoskeletal system. Mol Biotechnol. 2008, 38: 137-144. 10.1007/s12033-007-0071-8. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH: Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982, 1: 841-845. Schakowski F, Buttgereit P, Mazur M, Marten A, Schottker B, Gorschluter M, Schmidt-Wolf IG: Novel non-viral method for transfection of primary leukemia cells and cell lines. Genet Vaccines Ther. 2004, 2: 1-10.1186/1479-0556-2-1. Liu CP, Slate DL, Gravel R, Ruddle FH: Biological detection of specific mRNA molecules by microinjection. Proc Natl Acad Sci U S A. 1979, 76: 4503-4506. 10.1073/pnas.76.9.4503. Eglitis MA, Anderson WF: Retroviral vectors for introduction of genes into mammalian cells. Biotechniques. 1988, 6: 608-614. Grupp C, Muller GA: Renal fibroblast culture. Exp Nephrol. 1999, 7: 377-385. 10.1159/000020635. Kaissling B, Hegyi I, Loffing J, Le Hir M: Morphology of interstitial cells in the healthy kidney. Anat Embryol (Berl). 1996, 193: 303-318. Yashiki S, Umegaki R, Kino-Oka M, Taya M: Evaluation of attachment and growth of anchorage-dependent cells on culture surfaces with type I collagen coating. J Biosci Bioeng. 2001, 92: 385-388. Leclere PG, Panjwani A, Docherty R, Berry M, Pizzey J, Tonge DA: Effective gene delivery to adult neurons by a modified form of electroporation. J Neurosci Methods. 2005, 142: 137-143. 10.1016/j.jneumeth.2004.08.012. Maurisse R, De Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, Gruenert DC: Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol. 2010, 10: 9-10.1186/1472-6750-10-9. Hagemann C, Meyer C, Stojic J, Eicker S, Gerngras S, Kuhnel S, Roosen K, Vince GH: High efficiency transfection of glioma cell lines and primary cells for overexpression and RNAi experiments. J Neurosci Methods. 2006, 156: 194-202. 10.1016/j.jneumeth.2006.03.003. Lakshmipathy U, Pelacho B, Sudo K, Linehan JL, Coucouvanis E, Kaufman DS, Verfaillie CM: Efficient transfection of embryonic and adult stem cells. Stem Cells. 2004, 22: 531-543. 10.1634/stemcells.22-4-531. Nakayama A, Sato M, Shinohara M, Matsubara S, Yokomine T, Akasaka E, Yoshida M, Takao S: Efficient transfection of primarily cultured porcine embryonic fibroblasts using the amaxa nucleofection system. Cloning Stem Cells. 2007, 9: 523-534. 10.1089/clo.2007.0021. Faast R, Harrison SJ, Beebe LF, McIlfatrick SM, Ashman RJ, Nottle MB: Use of adult mesenchymal stem cells isolated from bone marrow and blood for somatic cell nuclear transfer in pigs. Cloning Stem Cells. 2006, 8: 166-173. 10.1089/clo.2006.8.166. Kuhholzer B, Hawley RJ, Lai L, Kolber-Simonds D, Prather RS: Clonal lines of transgenic fibroblast cells derived from the same fetus result in different development when used for nuclear transfer in pigs. Biol Reprod. 2001, 64: 1695-1698. 10.1095/biolreprod64.6.1695. Powell AM, Talbot NC, Wells KD, Kerr DE, Pursel VG, Wall RJ: Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biol Reprod. 2004, 71: 210-216. 10.1095/biolreprod.104.027193. Kemter E, Lieke T, Kessler B, Kurome M, Wuensch A, Summerfield A, Ayares D, Nagashima H, Baars W, Schwinzer R, Wolf E: Human TNF-related apoptosis-inducing ligand-expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses. Xenotransplantation. 2012, 19: 40-51. 10.1111/j.1399-3089.2011.00688.x. Matsumoto S, Okumura K, Ogata A, Hisatomi Y, Sato A, Hattori K, Matsumoto M, Kaji Y, Takahashi M, Yamamoto T, et al: Isolation of tissue progenitor cells from duct-ligated salivary glands of swine. Cloning Stem Cells. 2007, 9: 176-190. 10.1089/clo.2006.0022. Henegariu O, Heerema NA, Lowe Wright L, Bray-Ward P, Ward DC, Vance GH: Improvements in cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry. 2001, 43: 101-109. 10.1002/1097-0320(20010201)43:2<101::AID-CYTO1024>3.0.CO;2-8. Aigner B, Klymiuk N, Wolf E: Transgenic pigs for xenotransplantation: selection of promoter sequences for reliable transgene expression. Curr Opin Organ Transplant. 2010, 15: 201-206. 10.1097/MOT.0b013e328336ba4a. Besenfelder U, Modl J, Muller M, Brem G: Endoscopic embryo collection and embryo transfer into the oviduct and the uterus of pigs. Theriogenology. 1997, 47: 1051-1060. 10.1016/S0093-691X(97)00062-9. Yoshioka K: Development and application of a chemically defined medium for the in vitro production of porcine embryos. J Reprod Dev. 2011, 57: 9-16. 10.1262/jrd.10-196E.