Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review

Springer Science and Business Media LLC - Tập 337 Số 1-2 - Trang 1-18 - 2010
C. J. Atkinson1, J. Fitzgerald1, N.A. Hipps2
1East Malling Research, Kent, UK
2East Malling Research;

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexis MA, Rasse DP, Rumpel C, Bardoux G, Pechot N, Schmalzer P, Drake B, Mariotti A (2007) Fire impact on C and N losses and charcoal production in a scrub oak ecosystem. Biogeochemistry 82:201–216

Allen MF (2007) Mycorrhizal fungi: highways for water and nutrient movement in arid soils. Vadose Zone J 6:291–297

Amonette JE, Joseph S (2009) Characteristics of biochar: microchemical properties. Chapter 3. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 33–52

Ansley RJ, Boutton TW, Skjemstad JO (2006) Soil organic carbon and black carbon storage and dynamics under different fire regimes and temperate mixed-grass savanna. Glob Biogeochem Cycles 20:GB3006

Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos: soil physical properties, leaf SPAD and grain yield. Field Crops Res 111:81–84

Bagreev A, Bandosz TJ, Locke DC (2001) Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 39:1971–1979

Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33:1093–1109

Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 p

Berglund LM, DeLuca TH, Zackrisson TH (2004) Activated carbon amendments of soil alters nitrification rates in Scots pine forests. Soil Biol Biochem 36:2067–2073

Blackwell P, Riethmuller G, Collins M (2009) Biochar application for soil. Chapter 12. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 207–226

Bond WJ, Keeley J (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

Bornemann LC, Kookana RS, Welp G (2007) Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere 67:1033–1204

Bowman DMJS (1998) The impact of Aboriginal landscape burning on the Australian biota. New Phytol 140:385–410

Bridle TR, Pritchard D (2004) Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci Technol 50:169–175

Busscher WJ, Novak JM, Evans DE, Watts DW, Niandou MAS, Ahmedna M (2010) Influence of pecan biochar on physical properties of Norfolk loamy sand. Soil Sci 175:10–44

Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. Chapter 5. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 67–84

Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of green waste biochar as a soil amendment. Aust J Soil Res 45:629–634

Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

Cheng C-H, Lehmann J (2009) Ageing of black carbon along a temperature gradient. Chemosphere 75:1021–1027

Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

Cheng C-H, Lehmann J, Engelhard MH (2008a) Natural oxidation of black carbon in soils: changes in molecular form and surface change along a climosequence. Geochim Cosmochim Acta 72:1598–1610

Cheng C-H, Lehmann J, Thies JE, Burton SD (2008b) Stability of black carbon in soils across a climatic gradient. J Geophys Res 113:G02027

Clarholm M (1994) Granulated wood ash and a ‘N-free’ fertilizer to forest soil: effects on P availability. For Ecol Manage 66:127–136

Clement CR, McCann JM, Smith NJH (2003) Agrobiodiversity in Amazonia and its relationship with dark earths. Chapter 9. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, pp 159–178

Covington WW, Sackett SS (1992) Soil mineral nitrogen changes following prescribed burning in ponderosa pine. For Ecol Manage 54:175–191

Dai X, Boutton TW, Glaser B, Ansley RJ, Zech W (2005) Black carbon in temperate mixed-grass savanna. Soil Biol Biochem 37:1879–1881

Daud WMAW, Ali WSW, Sulaiman MZ (2001) Effect of carbonization temperature on the yield and porosity of char produced from palm shell. J Chem Technol Biotechnol 76:1281–1285

Dazzo FB, Brill WJ (1978) Regulation by fixed nitrogen of host-symbiont recognition in the Rhizobium-clover symbiosis. Plant Physiol 62:18–21

DeLuca TH, MacKenzie MD, Gundale MJ Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Sci Soc Am J 70:448–453

DeLuca TH, MacKenzie MD, Gundale MJ (2009) Biochar effects on soil nutrient transformation. Chapter 14. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 251–280

Demirbas A (2001) Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Convers Manage 42:1229–1238

Denevan WM (1996) A bluff model of riverine settlement in prehistoric Amazonia. Ann Assoc Am Geogr 86:654–681

Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. Chapter 2. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 13–32

Erickson C (2009) Historical ecology and future explorations. Chapter 23. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, pp 455–502

FAO (1985) Industrial charcoal making, FAO Forestry Research Paper 63. FAO, Rome Italy

Field CB, Randerson JT, Malmstrom CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51:74–88

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

Garcia-Montiel DC, Neill C, Melillo J, Thomas S, Stuedler PA, Cerri CC (2000) Soil phosphorus transformations following forest clearing for pasture in the Brazilian Amazon. Soil Sci Soc Am J 64:1792–1804

Gaunt J, Lehmann J (2008) Energy balance and emission associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42:4152–4158

Glaser B, Amelung W (2003) Pyrogenic carbon in native grassland soils along a climosequence in North America. Glob Biogeochem Cycles 17:1064. doi: 10.1029/2002GB002019

Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678

Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

Glaser B, Guggenberger G, Zech W, de Lourdes Ruivo M (2003) Soil organic matter stability in Amazonian dark earths. Chapter 8. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, pp 141–158

Graber ER, Hadas E (2009) Potential energy generation and carbon savings from waste biomass pyrolysis in Israel. Ann Environ Sci 3:207–216

Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For Ecol Manage 231:86–93

Gundale MJ, DeLuca TH (2007) Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biol Fertil Soils 43:303–311

Hamer U, Marschner B, Bordowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35:823–830

Hammes K, Schmidt MWI (2009) Changes in biochar in soil. Chapter 10. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 169–182

Hammes K, Torn MS, Lapenas AP, Schmidt MWI (2008) Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences Discussion 5:661–683

Hart JL, Van de Gevel SL, Mann DF (2007) Legacy of charcoaling in a western highland rim forest in Tennessee. Am Midl Nat 159:238–250

Hartt CF (1885). Contribuicao para a ethnologia do Valle do Amazonas II. Taperinha e os sitios dos moradores dos altos. Archivos do Museu Nacional do Rio de Janerio 6:10–14

Hilber I, Wyss GS, Mäder P, Bucheli TD, Meier I, Vogt L, Schulin R (2009) Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers. Environ Pollut 157:224–2230

Hua L, Wu W, Liu Y, McBride MB, Chen Y (2009) Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ Sci Pollut Res 16:1–9

Ishii T, Kadoya K (1994) Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. Journal of Japanese Society of Horticultural Science 63:529–535

Jenkinson DS, Ayanaba A (1977) Decomposition of carbon-14 labelled plant material under tropical conditions. Soil Sci Soc Am J 41:912–915

Kern DC, D’Aquino G, Rodrigues ET, Frazao FJL, Sombroek W, Myers TP, Neves EG (2003) Chapter 4. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, pp 51–75

Kim J-S, Sparovek G, Long RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem 39:684–690

Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

Kimura R, Nishio M (1989) Contribution of soil microorganism to utilisation of insoluble soil phosphorus by plants in grasslands. In: Proceedings, 3rd Grassland Ecology Conference, Banska Bystrica, Czechoslovakia, pp 10–17

Krull ES, Baldock JA, Skjemstad JO, Smernik RJ (2009) Characteristics of biochar: organo-chemical properties. Chapter 4. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 53–65

Kuhlbusch TAJ (1998) Black carbon and the carbon cycle. Science 280:1903–1904

Kuhlbusch TAJ, Andreae MO, Cachier H, Goldammer JG, Lacaux JP, Shea R, Crutzen PJ (1996) Black carbon formation by savanna fires: measurements and implication for the global carbon cycle. J Geophys Res Atmos 101:23651–23665

Kwon S, Pignatello JJ (2005) Effects of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. Environ Sci Technol 39:7932–7939

Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bio-energy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

Lal R (2008) Carbon sequestration. Philos Trans R Soc 363:815–830

Lehmann J (2009) Biological carbon sequestration must and can be a win-win approach. Clim Change 97:459–463

Lehmann J, Rondon MA (2005) Bio-char soil management on highly weathered soil in the humid tropics’. Chapter 36. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC, Boca Raton, pp 517–530

Lehmann J, da Silva Jr JP, Rondon M, Cravo MS, Greenwood J, Nehls T, Steiner C, Glaser B (2002). Slash and char—a feasible alternative for soil fertility management in the central Amazon? Proceedings of the 17th World Congress of Soil Science Bangkok, Thailand. Paper no 449

Lehmann J, da Silva Jr JP, Steiner C, Nehls T, Zech W, Glaser B (2003a) Nutrient availability and leaching in an archaeological Anthrosol and Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

Lehmann J, Kern D, German L, McCann J, Martins GC, Moreira L (2003b) Soil fertility and production potential. Chapter 6. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic, Dordrecht, pp 105–124

Lehmann J, Gaunt J, Rondon M (2005) Biochar sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Change 11:403–427

Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in the soil. Chapter 11. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 183–205

Leifeld J, Fenner S, Muller M (2007) Mobility of black carbon in drained peatland soils. Biogeosciences 4:425–432

Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizao FJ, Peterson J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizao FJ, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6069–6078

Lima IM, Marshall WE (2005) Granular activated carbons from broiler manure: physical, chemical and adsorptive properties. Bioresour Technol 96:699–706

Lua AC, Yang T (2004) Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells. J Colloid Interface Sci 276:364–372

Magrini-Bair KA, Czernik S, Pilath HM, Evans RJ, Maness PC, Leventhal J (2009) Biomass derived, carbon sequestration, designed fertilizers. Ann Environ Sci 3:217–225

Mahmood S, Finlay RD, Fransson A-M, Wallander H (2003) Effects of hardened wood ash on microbial activity, plant growth and nutrient uptake by ectomycorrhiza spruce seedlings. FEMS Microbiol Ecol 43:121–131

Maia SMF, Ogle SM, Cerri CC, Cerri CEP (2010) Changes in soil organic storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil Tillage Res 106:177–184

Major J, DiTommaso A, German LA, McCann JM (2003) Weed population dynamics and management on Amazonian dark earth. Chapter 22. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, pp 125–139

Major J, Steiner C, DiTommaso A, Falco NPS, Lehmann J (2005) Weed composition and d cover after three years of soil fertility management in the central Brazilian Amazon: compos, fertilizer, manures and charcoal applications. Weed Biology and Management 5:69–76

Major J, Steiner C, Downie A, Lehmann J (2009) Biochar effects on nutrient leaching. Chapter 15. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 271–287

Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob chang Biol 16:1366–1379

Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010b) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil (in press)

Mann CC (2002) The real dirt on rain forest fertility. Science 297:920–923

Marris M (2006) Black is the new green. Nature 442:624–626

Matsubara Y-I, Hasegawa N, Fukui H (2002) Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. Journal of the Japanese Society of Horticultural Science 71:371–374

McKay D, Rostain S, Iriate J, Glaser B, Birk JJ, Holst I, Renard D (2010) Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organised patchiness in Amazonia. Proc Natl Acad Sci 107:7823–7828

Miller RM, Miller SP, Jastrow JD, Rivetta CB (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Phytol 155:149–162

Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889

Myers TP, Denevan WM, Winklerprins A, Porro A (2003) Historical perspectives on Amazonian dark earths. Chapter 2. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic, Dordrecht, pp 15–28

Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40:846–853

Nguyen BT, Marschner P (2005) Effects of drying and rewetting on phosphorus transformations in red brown soils with different soil organic matter content. Soil Biol Biochem 37:1573–1576

Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2009) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 92:163–176

Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW Niandou MAS (2009) Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci 174:105–112

Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MAS (2010) Short-term CO2 mineralisation after additions of biochar and switchgrass to a typic Kandiudult. Geoderma 154:281–288

O’Neill B, Grossman J, Tsai MT, Gomes JE, Lehmann J, Peterson J, Neves E, Thies JE (2009) Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58:23–35

Oguntunde PG, Fosu M, Ajayi AE, van de Giesen N (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils 39:295–299

Oguntunde PG, Abiodun BJ, Ajayi AE, van de Giesen N (2008) Effects of charcoal production on soil physical properties in Ghana. J Plant Nutr Soil Sci 171:591–596

Piccolo A, Pietramellara G, Mbagwu JSC (1996) Effects of coal derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use Manage 12:209–213

Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

Pignatello JJ, Kwon S, Lu Y (2006) Effects of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ Sci Technol 40:7757–7763

Ponomarenko EV, Anderson DW (2001) Importance of charred organic matter in black chernozem soils of Saskatchewan. Can J Soil Sci 81:285–297

Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397–420

Raison RJ (1979) Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51:73–108

Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nature Geoscience 1:221–227

Rawlins BG, Vane CH, Kim AW, Tye AM, Kemp SJ, Bellamy PH (2008) Methods for estimating types of soil organic carbon and their application to surveys of UK urban areas. Soil Use Manage 24:47–59

Ritchie JC (1995) Current trends in studies of long-term plant community dynamics. New Phytol 130:469–494

Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L) increases with bio-char additions. Biol Fertil Soils 43:699–708

Rovira P, Duguy B, Vallejo VR (2009) Black carbon in wildfire-affected shrubland Mediterranean soils. J Plant Nutr Soil Sci 172:43–52

Rumpel C, Chaplot V, Planchon O, Bernadou J, Valentin C, Mariotti A (2006) Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena 65:30–40

Russell EJ (1988) Russell’s soil conditions and plant growth. In: Wild A (ed) Longman scientific and technical. Harlow, Essex, p 991

Saito M (1990) Charcoal as micro habitat for VA mycorrhizal fungi, and its practical application. Agric Ecosyst Environ 29:341–344

Santos A, Silva G, Miranda H, Miranda A, Lloyd J (2003) Effects of fire on surface carbon, energy and water vapor fluxes over Campo Sujo savanna in central Brazil. Funct Ecol 17:711–719

Sato S, Neves EG, Solomon D, Liang B, Lehmann J (2009) Biogenic calcium phosphate transformation in soils over millennial time scales. J Soils Sediments 9:194–205

Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications and current challenges. Glob Biogeochem Cycles 14:777–793

Schmidt MWI, Skjemstad JO, Gehrt E, Kogel-Knabner I (1999) Charred organic carbon in German chernozemic soils. Eur J Soil Sci 50:351–365

Schmidt MWI, Skjemstad JO, Czimczik CI, Glaser B, Prentice KM, Gelinas Y, Kuhlbusch TAJ (2001) Comparative analysis of black carbon in soils. Glob Biogeochem Cycles 15:163–167

Sierra J, Noel C, Dufour L, Ozier-Lafontaine H, Welcker C, Desfontaines L (2003) Mineral nutrition and growth of tropical maize as affected by soil acidity. Plant Soil 252:215–226

Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271

Skjemstad JO, Taylor JA, Janik LJ, Marvanek SP (1999) Soil organic carbon dynamics under long-term sugarcane monoculture. Aust J Soil Res 37:151–164

Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in US agricultural soils. Soil Sci Soc Am J 66:1249–1255

Solomon D, Lehmann J, Kinyangi J, Amelung W, Lobe I, Pell A, Riha S, Ngoze S, Verchot L, Mbugua D, Skjemstad J, Schafer T (2007a) Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Glob Chang Biol 13:511–530

Solomon D, Lehmann J, Thies J, Schafer T, Liang B, Kinyangi J, Neves E, Peterson J, Luizao F, Skjemstad J (2007b) Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. Geochim Cosmochim Acta 71:2285–2298

Sombroek W, de Lourdes Ruivo M, Fearnside PM, Glaser B, Lehmann J (2003) Amazonian dark earths as carbon stores and sinks. Chapter 7. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, pp 125–139

Sorensen LH (1974) Rate of decomposition or organic matter in soil as influenced by repeated air drying-rewetting and repeated additions of organic material. Soil Biol Biochem 6:287–292

Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

Steiner C (2007) Soil charcoal amendments maintain soil fertility and establish a carbon sink—research and prospects. In: Soil Ecology and Research Developments 1–6. Edt. Liu T-X

Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

Steiner C, de Arruda MR, Teixeira WG, Zech W (2008a) Soil respiration curves as soil fertility indicators in perennial central Amazonian plantations treated with charcoal, and mineral or organic fertilisers. Trop Sci. doi: 10.1002/ts.216

Steiner C, Das KC, Garcia M, Forester B, Zech W (2008b) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008c) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferraisol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899

Teixeira WG, Martins GC (2003) Soil physical characterization. Chapter 15. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, pp 271–286

Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. Chapter 6. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 85–10

Thies J, Suzuki K (2003) Amazonian dark earths biological measurement. Chapter 16. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, pp 287–332

Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785

Topoliantz S, Ponge J-F (2005) Charcoal consumption and casting activity by Pontoscolex corethrurus (Glossoscolecidae). Appl Soil Ecol 28:217–224

Troeh FR, Thompson LM (2005) Soils and soil fertility, 5th edn. Blackwell, Iowa

Trompowsky PM, Benites VM, Madari BE, Pimenta AS, Hockaday WC, Hatcher PG (2005) Characterisation of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Org Geochem 36:1480–1489

Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrol 76:230–237

Tyron EH (1948) Effects of charcoal on certain physical, chemical and biological properties of forest soils. Ecol Monogr 18:82–115

Van Gestel M, Merckx R, Vlassak K (1993) Microbial biomass responses to soil drying and rewetting: the fate of fast- and slow-growing microorganisms in soils from different climates. Soil Biol Biochem 25:109–123

Van Zwieten L, Singh B, Joseph S, Kimber S, Cowie A, Chan KY (2009) Biochar and emission of non-CO2 greenhouse gases from soil. Chapter 13. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 227–249

Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20

Whalley WR, Clark LJ, Gowing DJG, Cope RE, Lodge RJ, Leeds-Harrison PB (2006) Does soil strength play a role in wheat yield losses caused by soil drying? Plant Soil 280:279–290

Williams CN, Joseph KT (1976) Climate, soil and crop production in the humid tropics. Revised edition, third impression. Oxford University Press, Oxford, p 177

Woods WI (2003) Development of anthrosol research. Chapter 1. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths origin properties management. Kluwer Academic, Dordrecht, pp 3–14

Woolf D (2008) Biochar as a soil amendment: a review of the environmental implications. http://orgprints.org/13268/01/Biochar_as_a_soil_amendment_-_a_review.pdf

Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark in Acacia mangium on the yield of maize, cowpea, peanut and soil chemical properties in south Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

Zech W, Sensi N, Guggenberger G, Kaiser K, Lehmann J, Miano TM, Miltner A, Schroth G (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:117–161