Các yếu tố tiềm năng dẫn đến dự trữ buồng trứng giảm: một bài tổng quan toàn diện

Journal of Ovarian Research - Tập 16 - Trang 1-14 - 2023
Qinying Zhu1, Yi Li1, Jianhong Ma1, Hao Ma1, Xiaolei Liang2
1The First Clinical Medical College of Lanzhou University, Lanzhou, China
2Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China

Tóm tắt

Dự trữ buồng trứng được định nghĩa là số lượng noãn bào dự trữ trong buồng trứng hoặc số lượng noãn bào có thể được tuyển chọn. Dự trữ buồng trứng có thể bị ảnh hưởng bởi nhiều yếu tố, bao gồm hormone, chuyển hóa, dự trữ buồng trứng ban đầu, vấn đề môi trường, bệnh tật, và thuốc men, trong số những yếu tố khác. Với xu hướng trì hoãn mang thai trong xã hội hiện đại, dự trữ buồng trứng giảm (DOR) đã trở thành một trong những thách thức phổ biến nhất trong y học sinh sản lâm sàng hiện nay. Do cơ chế chưa rõ ràng và các đặc điểm lâm sàng phức tạp, việc quản lý điều trị nhắm mục tiêu cho các bác sĩ gặp nhiều khó khăn. Bài tổng quan này tập trung vào các yếu tố liên quan đến dự trữ buồng trứng và thảo luận về những ảnh hưởng tiềm năng cũng như các yếu tố bệnh sinh có thể giải thích các cơ chế khả dĩ của DOR, mà các nhà nghiên cứu tiếp theo có thể cải thiện hoặc xây dựng dựa trên để xác minh, tái tạo, và thiết lập các phát hiện nghiên cứu tiếp theo, cũng như để các nhà khoa học tìm ra các phương pháp điều trị mới.

Từ khóa

#dự trữ buồng trứng #dự trữ buồng trứng giảm #điều trị sinh sản #y học sinh sản lâm sàng #các yếu tố bệnh sinh

Tài liệu tham khảo

Richardson MC, Guo M, Fauser BC, Macklon NS. Environmental and developmental origins of ovarian reserve. Hum Reprod Update. 2014;20:353–69. Mark-Kappeler CJ, Hoyer PB, Devine PJ. Xenobiotic effects on ovarian preantral follicles. Biol Reprod. 2011;85:871–83. Fan Y, Chang Y, Wei L, Chen J, Li J, Goldsmith S, Silber S, Liang X. Apoptosis of mural granulosa cells is increased in women with diminished ovarian reserve. J Assist Reprod Genet. 2019;36:1225–35. Testing. Interpreting measures of ovarian reserve: a committee opinion. Fertil Steril. 2020;114:1151–7. Tal R, Seifer DB. Ovarian reserve testing: a user’s guide. Am J Obstet Gynecol. 2017;217:129–40. Tal R, Seifer DB. Potential mechanisms for racial and ethnic differences in antimüllerian hormone and ovarian reserve. Int J Endocrinol. 2013;2013:818912. Attali E, Yogev Y. The impact of advanced maternal age on pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2021;70:2–9. Alviggi C, Esteves SC, Conforti A. Ovarian reserve tests: are they only a quantitative measure? Fertil Steril. 2020;113:761–2. Assens M, Dyre L, Henriksen LS, Brocks V, Sundberg K, Jensen LN, Pedersen AT, Main KM. Menstrual pattern, Reproductive hormones, and transabdominal 3D Ultrasound in 317 adolescent girls. J Clin Endocrinol Metab 2020, 105. Xu J, Bishop CV, Lawson MS, Park BS, Xu F. Anti-Müllerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. Hum Reprod. 2016;31:1522–30. Andersen CY, Schmidt KT, Kristensen SG, Rosendahl M, Byskov AG, Ernst E. Concentrations of AMH and inhibin-B in relation to follicular diameter in normal human small antral follicles. Hum Reprod. 2010;25:1282–7. Kevenaar ME, Meerasahib MF, Kramer P, van de Lang-Born BM, de Jong FH, Groome NP, Themmen AP, Visser JA. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology. 2006;147:3228–34. Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology. 1999;140:5789–96. Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, Raine-Fenning N, Campbell BK, Yding Andersen C. Which follicles make the most anti-mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19:519–27. Loumaye E, Engrand P, Shoham Z, Hillier SG, Baird DT. Clinical evidence for an LH ceiling? Hum Reprod. 2003;18:2719–20. Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18:73–91. Adriaens I, Cortvrindt R, Smitz J. Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum Reprod. 2004;19:398–408. Palermo R. Differential actions of FSH and LH during folliculogenesis. Reprod Biomed Online. 2007;15:326–37. Kreeger PK, Fernandes NN, Woodruff TK, Shea LD. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod. 2005;73:942–50. Chakravarthi VP, Ratri A, Masumi S, Borosha S, Ghosh S, Christenson LK, Roby KF, Wolfe MW, Rumi MAK. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: the role of estrogen receptor β. Mol Cell Endocrinol. 2021;528:111212. Baird DT. A model for follicular selection and ovulation: lessons from superovulation. J Steroid Biochem. 1987;27:15–23. Regan SL, Knight PG, Yovich JL, Stanger JD, Leung Y, Arfuso F, Dharmarajan A, Almahbobi G. Infertility and ovarian follicle reserve depletion are associated with dysregulation of the FSH and LH receptor density in human antral follicles. Mol Cell Endocrinol. 2017;446:40–51. Wen J, Huang K, Du X, Zhang H, Ding T, Zhang C, Ma W, Zhong Y, Qu W, Liu Y, et al. Can Inhibin B reflect Ovarian Reserve of Healthy Reproductive Age women effectively? Front Endocrinol (Lausanne). 2021;12:626534. Wunder DM, Bersinger NA, Yared M, Kretschmer R, Birkhäuser MH. Statistically significant changes of antimüllerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women. Fertil Steril. 2008;89:927–33. Yding Andersen C. Inhibin-B secretion and FSH isoform distribution may play an integral part of follicular selection in the natural menstrual cycle. Mol Hum Reprod. 2017;23:16–24. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–16. Khristi V, Chakravarthi VP, Singh P, Ghosh S, Pramanik A, Ratri A, Borosha S, Roby KF, Wolfe MW, Rumi MAK. ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation. Mol Cell Endocrinol. 2018;474:214–26. van Dessel HJ, Schipper I, Pache TD, van Geldorp H, de Jong FH, Fauser BC. Normal human follicle development: an evaluation of correlations with oestradiol, androstenedione and progesterone levels in individual follicles. Clin Endocrinol (Oxf). 1996;44:191–8. Kezele P, Skinner MK. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003;144:3329–37. Yuan XH, Yang CR, Wang XN, Zhang LL, Gao XR, Shi ZY. Progesterone maintains the status of granulosa cells and slows follicle development partly through PGRMC1. J Cell Physiol. 2018;234:709–20. Lenie S, Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol Reprod. 2009;80:685–95. Catteau-Jonard S, Jamin SP, Leclerc A, Gonzalès J, Dewailly D, di Clemente N. Anti-mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:4456–61. Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, Zhou X, Chao HT, Tsai MY, Chang C. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci U S A. 2004;101:11209–14. Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, Sakari M, Takada I, Nakamura T, Metzger D, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci U S A. 2006;103:224–9. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, Rose UM, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142:4891–9. Pankhurst MW, Kelley RL, Sanders RL, Woodcock SR, Oorschot DE, Batchelor NJ. Anti-Müllerian hormone overexpression restricts preantral ovarian follicle survival. J Endocrinol. 2018;237:153–63. Fujibe Y, Baba T, Nagao S, Adachi S, Ikeda K, Morishita M, Kuno Y, Suzuki M, Mizuuchi M, Honnma H, et al. Androgen potentiates the expression of FSH receptor and supports preantral follicle development in mice. J Ovarian Res. 2019;12:31. Warzych E, Lipinska P. Energy metabolism of follicular environment during oocyte growth and maturation. J Reprod Dev. 2020;66:1–7. Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update. 2021;27:27–47. Zhang X, Zhang W, Wang Z, Zheng N, Yuan F, Li B, Li X, Deng L, Lin M, Chen X, Zhang M. Enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling. Cell Death Dis. 2022;13:87. Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction. 2002;124:675–81. Herta AC, von Mengden L, Akin N, Billooye K, Coucke W, van Leersum J, Cava-Cami B, Saucedo-Cuevas L, Klamt F, Smitz J, Anckaert E. Characterization of carbohydrate metabolism in in vivo- and in vitro-grown and matured mouse antral follicles†. Biol Reprod. 2022;107:998–1013. Tanaka K, Hayashi Y, Takehara A, Ito-Matsuoka Y, Tachibana M, Yaegashi N, Matsui Y. Abnormal early folliculogenesis due to impeded pyruvate metabolism in mouse oocytes†. Biol Reprod. 2021;105:64–75. Baufeld A, Vanselow J. Lactate-induced effects on bovine granulosa cells are mediated via PKA signaling. Cell Tissue Res. 2022;388:471–7. Cao J, Huo P, Cui K, Wei H, Cao J, Wang J, Liu Q, Lei X, Zhang S. Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome. Cell Commun Signal. 2022;20:61. Hoque SAM, Umehara T, Kawai T, Shimada M. Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Free Radic Biol Med. 2021;163:344–55. Downs SM, Humpherson PG, Leese HJ. Meiotic induction in cumulus cell-enclosed mouse oocytes: involvement of the pentose phosphate pathway. Biol Reprod. 1998;58:1084–94. Herrick JR, Brad AM, Krisher RL. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction. 2006;131:289–98. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139:685–95. Frank LA, Sutton-McDowall ML, Brown HM, Russell DL, Gilchrist RB, Thompson JG. Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of heat shock protein 90. Hum Reprod. 2014;29:1292–303. Brownlee M. Biochemistry and molecular cell biology of diabetic Complications. Nature. 2001;414:813–20. Wang YC, Ma YD, Liu H, Cui ZH, Zhao D, Zhang XQ, Zhang LX, Guo WJ, Long Y, Tu SS, et al. Hyperandrogen-induced polyol pathway flux increase affects ovarian function in polycystic ovary syndrome via excessive oxidative stress. Life Sci. 2023;313:121224. Zhang Y, Yan Z, Liu H, Li L, Yuan C, Qin L, Cai L, Liu J, Hu Y, Cui Y. Sorbitol accumulation decreases oocyte quality in aged mice by altering the intracellular redox balance. Aging. 2021;13:25291–303. Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am J Physiol Endocrinol Metab. 2013;304:E599–613. de Andrade Melo-Sterza F, Poehland R. Lipid metabolism in bovine oocytes and early embryos under in vivo, in Vitro, and stress conditions. Int J Mol Sci 2021, 22. Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148:R15–27. Zhao Z, Fan Q, Zhu Q, He R, Li Y, Liu C, Wang J, Liang X. Decreased fatty acids induced granulosa cell apoptosis in patients with diminished ovarian reserve. J Assist Reprod Genet. 2022;39:1105–14. Barbe A, Bongrani A, Mellouk N, Estienne A, Kurowska P, Grandhaye J, Elfassy Y, Levy R, Rak A, Froment P, Dupont J. Mechanisms of Adiponectin Action in Fertility: an overview from Gametogenesis to Gestation in humans and animal models in normal and pathological conditions. Int J Mol Sci 2019, 20. Cheng L, Shi H, Jin Y, Li X, Pan J, Lai Y, Lin Y, Jin Y, Roy G, Zhao A, Li F. Adiponectin Deficiency leads to female subfertility and ovarian dysfunctions in mice. Endocrinology. 2016;157:4875–87. Grandhaye J, Hmadeh S, Plotton I, Levasseur F, Estienne A, LeGuevel R, Levern Y, Ramé C, Jeanpierre E, Guerif F, et al. The adiponectin agonist, AdipoRon, inhibits steroidogenesis and cell proliferation in human luteinized granulosa cells. Mol Cell Endocrinol. 2021;520:111080. Watanabe H, Hirai S, Tateno H, Fukui Y. Variation of cholesterol contents in porcine cumulus-oocyte complexes is a key factor in regulation of fertilizing capacity. Theriogenology. 2013;79:680–6. Comiskey M, Warner CM. Spatio-temporal localization of membrane lipid rafts in mouse oocytes and cleaving preimplantation embryos. Dev Biol. 2007;303:727–39. Ke FC, Chuang LC, Lee MT, Chen YJ, Lin SW, Wang PS, Stocco DM, Hwang JJ. The modulatory role of transforming growth factor beta1 and androstenedione on follicle-stimulating hormone-induced gelatinase secretion and steroidogenesis in rat granulosa cells. Biol Reprod. 2004;70:1292–8. Sahmi M, Nicola ES, Silva JM, Price CA. Expression of 17beta- and 3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro. Mol Cell Endocrinol. 2004;223:43–54. Burks DM, McCoy MR, Dutta S, Mark-Kappeler CJ, Hoyer PB, Pepling ME. Molecular analysis of the effects of steroid hormones on mouse meiotic prophase I progression. Reprod Biol Endocrinol. 2019;17:105. He R, Zhao Z, Yang Y, Liang X. Using bioinformatics and metabolomics to identify altered granulosa cells in patients with diminished ovarian reserve. PeerJ. 2020;8:e9812. Yang X, Zhao Z, Fan Q, Li H, Zhao L, Liu C, Liang X. Cholesterol metabolism is decreased in patients with diminished ovarian reserve. Reprod Biomed Online. 2022;44:185–92. Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16:715–25. Jiang Z, Shi C, Han H, Wang Y, Liang R, Chen X, Shen H. Mitochondria-related changes and metabolic dysfunction in low prognosis patients under the POSEIDON classification. Hum Reprod. 2021;36:2904–15. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlöf S, Oldfors A, Wibom R, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23. Ross JM, Stewart JB, Hagström E, Brené S, Mourier A, Coppotelli G, Freyer C, Lagouge M, Hoffer BJ, Olson L, Larsson NG. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013;501:412–5. Ragonese F, Monarca L, De Luca A, Mancinelli L, Mariani M, Corbucci C, Gerli S, Iannitti RG, Leonardi L, Fioretti B. Resveratrol depolarizes the membrane potential in human granulosa cells and promotes mitochondrial biogenesis. Fertil Steril. 2021;115:1063–73. Boucret L, Chao de la Barca JM, Morinière C, Desquiret V, Ferré-L’Hôtellier V, Descamps P, Marcaillou C, Reynier P, Procaccio V, May-Panloup P. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod. 2015;30:1653–64. Wallace WH, Kelsey TW. Human ovarian reserve from conception to the menopause. PLoS ONE. 2010;5:e8772. Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11:461–71. Vaskivuo TE, Anttonen M, Herva R, Billig H, Dorland M, te Velde ER, Stenbäck F, Heikinheimo M, Tapanainen JS. Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4. J Clin Endocrinol Metab. 2001;86:3421–9. Mazaud S, Guigon CJ, Lozach A, Coudouel N, Forest MG, Coffigny H, Magre S. Establishment of the reproductive function and transient fertility of female rats lacking primordial follicle stock after fetal gamma-irradiation. Endocrinology. 2002;143:4775–87. Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology. 2005;146:3185–93. Fraser A, McNally W, Sattar N, Anderson EL, Lashen H, Fleming R, Lawlor DA, Nelson SM. Prenatal exposures and anti-mullerian hormone in female adolescents: the Avon Longitudinal Study of parents and children. Am J Epidemiol. 2013;178:1414–23. Strohsnitter WC, Hatch EE, Hyer M, Troisi R, Kaufman RH, Robboy SJ, Palmer JR, Titus-Ernstoff L, Anderson D, Hoover RN, Noller KL. The association between in utero cigarette smoke exposure and age at menopause. Am J Epidemiol. 2008;167:727–33. Qiqi L, Junlin H, Xuemei C, Yi H, Fangfang L, Yanqing G, Yan Z, Lamptey J, Zhuxiu C, Fangfei L, et al. Fetal exposure of aristolochic acid I undermines ovarian reserve by disturbing primordial folliculogenesis. Ecotoxicol Environ Saf. 2022;236:113480. Rostami Dovom M, Noroozzadeh M, Mosaffa N, Piryaei A, Zadeh-Vakili A, Aabdollahifar MA, Rahmati M, Farhadi-Azar M, Ramezani Tehrani F. Maternal exposure to D-galactose reduces Ovarian Reserve in female rat offspring later in Life. Int J Endocrinol Metab. 2022;20:e123206. Rae MT, Palassio S, Kyle CE, Brooks AN, Lea RG, Miller DW, Rhind SM. Effect of maternal undernutrition during pregnancy on early ovarian development and subsequent follicular development in sheep fetuses. Reproduction. 2001;122:915–22. Mossa F, Carter F, Walsh SW, Kenny DA, Smith GW, Ireland JL, Hildebrandt TB, Lonergan P, Ireland JJ, Evans AC. Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol Reprod. 2013;88:92. Nwachukwu CU, Woad KJ, Barnes N, Gardner DS, Robinson RS. Maternal protein restriction affects fetal ovary development in sheep. Reprod Fertil. 2021;2:161–71. Winship AL, Gazzard SE, Cullen-McEwen LA, Bertram JF, Hutt KJ. Maternal low-protein diet programmes low ovarian reserve in offspring. Reproduction. 2018;156:299–311. Aiken CE, Tarry-Adkins JL, Ozanne SE. Transgenerational Developmental Programming of Ovarian Reserve. Sci Rep. 2015;5:16175. Aiken CE, Tarry-Adkins JL, Penfold NC, Dearden L, Ozanne SE. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. Faseb j. 2016;30:1548–56. Eubanks AA, Nobles CJ, Hill MJ, DeCherney AH, Kim K, Sjaarda LA, Perkins NJ, Ye A, Zolton JR, Silver RM, et al. Recalled maternal lifestyle behaviors associated with anti-müllerian hormone of adult female offspring. Reprod Toxicol. 2020;98:75–81. Bleil ME, English P, Valle J, Woods NF, Crowder KD, Gregorich SE, Cedars MI. Is in utero exposure to maternal socioeconomic disadvantage related to offspring ovarian reserve in adulthood? Womens Midlife Health. 2018;4:5. Upson K, Weinberg CR, Nichols HB, Dinse GE, D’Aloisio AA, Sandler DP, Baird DD. Early-life farm exposure and Ovarian Reserve in a US Cohort of women. Epidemiology. 2021;32:672–80. Succu S, Sale S, Ghirello G, Ireland JJ, Evans ACO, Atzori AS, Mossa F. Exposure of dairy cows to high environmental temperatures and their lactation status impairs establishment of the ovarian reserve in their offspring. J Dairy Sci. 2020;103:11957–69. Shalom-Paz E, Weill S, Ginzberg Y, Khatib N, Anabusi S, Klorin G, Sabo E, Beloosesky R. IUGR induced by maternal chronic inflammation: long-term effect on offspring’s ovaries in rat model-a preliminary report. J Endocrinol Invest. 2017;40:1125–31. Medenica S, Zivanovic D, Batkoska L, Marinelli S, Basile G, Perino A, Cucinella G, Gullo G, Zaami S. The future is coming: Artificial Intelligence in the treatment of Infertility could improve assisted Reproduction outcomes-the Value of Regulatory Frameworks. Diagnostics (Basel) 2022, 12. Schweigert FJ, Gericke B, Wolfram W, Kaisers U, Dudenhausen JW. Peptide and protein profiles in serum and follicular fluid of women undergoing IVF. Hum Reprod. 2006;21:2960–8. Hanrieder J, Nyakas A, Naessén T, Bergquist J. Proteomic analysis of human follicular fluid using an alternative bottom-up approach. J Proteome Res. 2008;7:443–9. Zakerkish F, Brännström M, Carlsohn E, Sihlbom C, van der Post S, Thoroddsen A. Proteomic analysis of follicular fluid during human ovulation. Acta Obstet Gynecol Scand. 2020;99:917–24. Matoba S, Bender K, Fahey AG, Mamo S, Brennan L, Lonergan P, Fair T. Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod Fertil Dev. 2014;26:337–45. O’Gorman A, Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L. Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction. 2013;146:389–95. Yang J, Li Y, Li S, Zhang Y, Feng R, Huang R, Chen M, Qian Y. Metabolic signatures in human follicular fluid identify lysophosphatidylcholine as a predictor of follicular development. Commun Biol. 2022;5:763. Hemmings KE, Maruthini D, Vyjayanthi S, Hogg JE, Balen AH, Campbell BK, Leese HJ, Picton HM. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment. Hum Reprod. 2013;28:1031–44. Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L. An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertil Steril. 2012;97:1078–1084e1071. O’Brien Y, Wingfield M, O’Shea LC. Anti-Müllerian hormone and progesterone levels in human follicular fluid are predictors of embryonic development. Reprod Biol Endocrinol. 2019;17:47. Wen J, Feng Y, Yan W, Yuan S, Zhang J, Luo A, Wang S. Vaginal microbiota changes in patients with premature ovarian insufficiency and its correlation with ovarian function. Front Endocrinol (Lausanne). 2022;13:824282. Morales-Martínez FA, Salas-Castro C, García-Garza MR, Valdés-Martínez O, García-Luna SM, Garza-Elizondo M, Vidal-Gutiérrez O. Saldívar-Rodríguez D, Sordia-Hernández LH: evaluation of the Ovarian Reserve in Women with systemic Lupus Erythematosus. J Family Reprod Health. 2021;15:38–44. Ulug P, Oner G, Kasap B, Akbas EM, Ozcicek F. Evaluation of ovarian reserve tests in women with systemic Lupus Erythematosus. Am J Reprod Immunol. 2014;72:85–8. Martins NFE, Seixas MI, Pereira JP, Costa MM, Fonseca JE. Anti-müllerian hormone and ovarian reserve in systemic Lupus Erythematosus. Clin Rheumatol. 2017;36:2853–4. Lourenço DMR, Araújo DB, Aikawa NE, Yamakami LYS, Borba EF, Maciel GAR, Soares-Junior JM, Baracat EC, Pereira RMR, Bonfa E, Silva CA. Adrenal steroidogenesis and ovarian reserve in adult childhood-onset systemic lupus erytematosus patients. Clin Rheumatol. 2021;40:3651–8. de Araujo DB, Yamakami LY, Aikawa NE, Bonfá E, Viana VS, Pasoto SG, Pereira RM, Serafin PC, Borba EF, Silva CA. Ovarian reserve in adult patients with childhood-onset lupus: a possible deleterious effect of methotrexate? Scand J Rheumatol. 2014;43:503–11. Giambalvo S, Garaffoni C, Silvagni E, Furini F, Rizzo R, Govoni M, Bortoluzzi A. Factors associated with fertility abnormalities in women with systemic Lupus Erythematosus: a systematic review and meta-analysis. Autoimmun Rev. 2022;21:103038. Di Mario C, Petricca L, Gigante MR, Barini A, Barini A, Varriano V, Paglionico A, Cattani P, Ferraccioli G, Tolusso B, Gremese E. Anti-Müllerian hormone serum levels in systemic Lupus Erythematosus patients: influence of the Disease severity and therapy on the ovarian reserve. Endocrine. 2019;63:369–75. Zhang XH, Zhang YA, Chen X, Qiao PY, Zhang LY. Assessment of the Ovarian Reserve by serum Anti-Müllerian hormone in rheumatoid arthritis patients: a systematic review and Meta-analysis. Int Arch Allergy Immunol. 2022;183:462–9. Brouwer J, Laven JS, Hazes JM, Schipper I, Dolhain RJ. Levels of serum anti-Müllerian hormone, a marker for ovarian reserve, in women with rheumatoid arthritis. Arthritis Care Res (Hoboken). 2013;65:1534–8. Lopez-Corbeto M, Martínez-Mateu S, Pluma A, Ferrer R, López-Lasanta M, De Agustín JJ, Barceló M, Julià A, Marsal S. The ovarian reserve as measured by the anti-Müllerian hormone is not diminished in patients with rheumatoid arthritis compared to the healthy population. Clin Exp Rheumatol. 2021;39:337–43. Mont’Alverne AR, Yamakami LY, Gonçalves CR, Baracat EC, Bonfá E, Silva CA. Diminished ovarian reserve in Behçet’s Disease patients. Clin Rheumatol. 2015;34:179–83. şahİn A, Karakuş S, Durmaz Y, Yildiz Ç, Aydin H, Cengİz AK. Ovarian reserve is preserved in Behçet’s Disease. Int J Rheum Dis. 2017;20:2070–6. Henes M, Froeschlin J, Taran FA, Brucker S, Rall KK, Xenitidis T, Igney-Oertel A, Lawrenz B, Henes JC. Ovarian reserve alterations in premenopausal women with chronic inflammatory rheumatic Diseases: impact of rheumatoid arthritis, Behçet’s Disease and spondyloarthritis on anti-Müllerian hormone levels. Rheumatology (Oxford). 2015;54:1709–12. Clowse ME, Copland SC, Hsieh TC, Chow SC, Hoffman GS, Merkel PA, Spiera RF, Davis JC Jr., McCune WJ, Ytterberg SR, et al. Ovarian reserve diminished by oral cyclophosphamide therapy for granulomatosis with polyangiitis (Wegener’s). Arthritis Care Res (Hoboken). 2011;63:1777–81. Mont’Alverne AR, Pereira RM, Yamakami LY, Viana VS, Baracat EC, Bonfá E, Silva CA. Reduced ovarian reserve in patients with Takayasu arteritis. J Rheumatol. 2014;41:2055–9. Yamakami LY, Serafini PC, de Araujo DB, Bonfá E, Leon EP, Baracat EC, Silva CA. Ovarian reserve in women with primary antiphospholipid syndrome. Lupus. 2014;23:862–7. Alexander VM, Ashley-Martin J, Riley JK, Cooper AR, Ratts VS, Jungheim ES. Association between arthritis treatments and ovarian reserve: a prospective study. Reprod Biomed Online. 2021;42:1203–10. de Souza FH, Shinjo SK, Yamakami LY, Viana VS, Baracat EC, Bonfá E, Silva CA. Reduction of ovarian reserve in adult patients with dermatomyositis. Clin Exp Rheumatol. 2015;33:44–9. Yarde F, Broekmans FJ, van der Pal-de Bruin KM, Schönbeck Y, te Velde ER, Stein AD, Lumey LH. Prenatal famine, birthweight, reproductive performance and age at menopause: the Dutch hunger winter families study. Hum Reprod. 2013;28:3328–36. Björvang RD, Hassan J, Stefopoulou M, Gemzell-Danielsson K, Pedrelli M, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Acharya G, Damdimopoulou P. Persistent organic pollutants and the size of ovarian reserve in reproductive-aged women. Environ Int. 2021;155:106589. Vabre P, Gatimel N, Moreau J, Gayrard V, Picard-Hagen N, Parinaud J, Leandri RD. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health. 2017;16:37. Ding N, Harlow SD, Randolph JF Jr., Loch-Caruso R, Park SK. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update. 2020;26:724–52. Du G, Huang H, Hu J, Qin Y, Wu D, Song L, Xia Y, Wang X. Endocrine-related effects of perfluorooctanoic acid (PFOA) in zebrafish, H295R steroidogenesis and receptor reporter gene assays. Chemosphere. 2013;91:1099–106. He QK, Li YP, Xu ZR, Wei WB, Qiao FX, Sun MX, Liu YC, Chen YZ, Wang HL, Qi ZQ, Liu Y. 3-MCPD exposure enhances ovarian fibrosis and reduces oocyte quality in mice. Environ Pollut. 2022;316:120662. Li Y, Xiao N, Liu M, Liu Y, He A, Wang L, Luo H, Yao Y, Sun H. Dysregulation of steroid metabolome in follicular fluid links phthalate exposure to diminished ovarian reserve of childbearing-age women. Environ Pollut. 2023;330:121730. Chen Y, Sun Y, Zhao A, Cai X, Yu A, Xu Q, Wang P, Yao J, Wang Q, Wang W. Arsenic exposure diminishes ovarian follicular reserve and induces abnormal steroidogenesis by DNA methylation. Ecotoxicol Environ Saf. 2022;241:113816. Jurewicz J, Radwan M, Wielgomas B, Karwacka A, Klimowska A, Kałużny P, Radwan P, Hanke W. Parameters of ovarian reserve in relation to urinary concentrations of parabens. Environ Health. 2020;19:26. Jurewicz J, Radwan P, Wielgomas B, Radwan M, Karwacka A, Kałużny P, Piskunowicz M, Dziewirska E, Hanke W. Exposure to pyrethroid pesticides and ovarian reserve. Environ Int. 2020;144:106028. Czubacka E, Wielgomas B, Klimowska A, Radwan M, Radwan P, Karwacka A, Kałużny P, Jurewicz J. Urinary bisphenol A concentrations and Parameters of Ovarian Reserve among women from a fertility clinic. Int J Environ Res Public Health 2021, 18. Fei J, Qu JH, Ding XL, Xue K, Lu CC, Chen JF, Song L, Xia YK, Wang SL, Wang XR. Fenvalerate inhibits the growth of primary cultured rat preantral ovarian follicles. Toxicology. 2010;267:1–6. Shen H, Gao M, Li Q, Sun H, Jiang Y, Liu L, Wu J, Yu X, Jia T, Xin Y, et al. Effect of PFOA exposure on diminished ovarian reserve and its metabolism. Reprod Biol Endocrinol. 2023;21:16. Gaskins AJ, Mínguez-Alarcón L, Fong KC, Abdelmessih S, Coull BA, Chavarro JE, Schwartz J, Kloog I, Souter I, Hauser R, Laden F. Exposure to fine particulate matter and Ovarian Reserve among women from a fertility clinic. Epidemiology. 2019;30:486–91. Kim H, Choe SA, Kim OJ, Kim SY, Kim S, Im C, Kim YS, Yoon TK. Outdoor air pollution and diminished ovarian reserve among infertile Korean women. Environ Health Prev Med. 2021;26:20. Hood RB, James P, Fong KC, Mínguez-Alarcón L, Coull BA, Schwartz J, Kloog I, Laden F, Gaskins AJ. The influence of fine particulate matter on the association between residential greenness and ovarian reserve. Environ Res. 2021;197:111162. Feng X, Luo J, Wang X, Xie W, Jiao J, Wu X, Fan L, Qin G. Association of exposure to ambient air pollution with ovarian reserve among women in Shanxi province of north China. Environ Pollut. 2021;278:116868. de Sá ST-JJR, de Viana WF, Camargo JH, Ramos LS, Folhadella AA, Polisseni IM, de Freitas J. Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology. 2008;69:155–66. Hale BJ, Hager CL, Seibert JT, Selsby JT, Baumgard LH, Keating AF, Ross JW. Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod. 2017;97:426–37. Gaskins AJ, Mínguez-Alarcón L, VoPham T, Hart JE, Chavarro JE, Schwartz J, Souter I, Laden F. Impact of ambient temperature on ovarian reserve. Fertil Steril. 2021;116:1052–60. Qiang J, Tao FY, Lu QS, He J, Xu P. Upregulation of miR-33 exacerbates heat-stress-Induced apoptosis in Granulosa Cell and Follicular Atresia of Nile Tilapia (Oreochromis niloticus) by targeting TGFβ1I1. Genes (Basel) 2022, 13. Khan A, Dou J, Wang Y, Jiang X, Khan MZ, Luo H, Usman T, Zhu H. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J Anim Sci Biotechnol. 2020;11:25. Li GM, Liu LP, Yin B, Liu YY, Dong WW, Gong S, Zhang J, Tan JH. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poult Sci. 2020;99:6084–93. Shehab-El-Deen MA, Leroy JL, Fadel MS, Saleh SY, Maes D, Van Soom A. Biochemical changes in the follicular fluid of the dominant follicle of high producing dairy cows exposed to heat stress early post-partum. Anim Reprod Sci. 2010;117:189–200. Shimizu T, Ohshima I, Ozawa M, Takahashi S, Tajima A, Shiota M, Miyazaki H, Kanai Y. Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells. Reproduction. 2005;129:463–72. Mínguez-Alarcón L, Souter I, Williams PL, Ford JB, Hauser R, Chavarro JE, Gaskins AJ. Occupational factors and markers of ovarian reserve and response among women at a fertility centre. Occup Environ Med. 2017;74:426–31. Bleil ME, Adler NE, Pasch LA, Sternfeld B, Gregorich SE, Rosen MP, Cedars MI. Depressive symptomatology, psychological stress, and ovarian reserve: a role for psychological factors in ovarian aging? Menopause. 2012;19:1176–85. Dong YZ, Zhou FJ, Sun YP. Psychological stress is related to a decrease of serum anti-müllerian hormone level in infertile women. Reprod Biol Endocrinol. 2017;15:51. Cizmeli C, Lobel M, Franasiak J, Pastore LM. Levels and associations among self-esteem, fertility distress, coping, and reaction to potentially being a genetic carrier in women with diminished ovarian reserve. Fertil Steril. 2013;99:2037–44. e2033. Teal S, Edelman A. Contraception Selection, Effectiveness, and adverse effects: a review. JAMA. 2021;326:2507–18. Kavanaugh ML, Pliskin E. Use of contraception among reproductive-aged women in the United States, 2014 and 2016. F S Rep. 2020;1:83–93. Birch Petersen K, Hvidman HW, Forman JL, Pinborg A, Larsen EC, Macklon KT, Sylvest R, Andersen AN. Ovarian reserve assessment in users of oral contraception seeking fertility advice on their reproductive lifespan. Hum Reprod. 2015;30:2364–75. Hariton E, Shirazi TN, Douglas NC, Hershlag A, Briggs SF. Anti-Müllerian hormone levels among contraceptive users: evidence from a cross-sectional cohort of 27,125 individuals. Am J Obstet Gynecol 2021, 225:515.e511-515.e510. Deb S, Campbell BK, Pincott-Allen C, Clewes JS, Cumberpatch G, Raine-Fenning NJ. Quantifying effect of combined oral contraceptive pill on functional ovarian reserve as measured by serum anti-Müllerian hormone and small antral follicle count using three-dimensional ultrasound. Ultrasound Obstet Gynecol. 2012;39:574–80. Bentzen JG, Forman JL, Pinborg A, Lidegaard Ø, Larsen EC, Friis-Hansen L, Johannsen TH, Nyboe Andersen A. Ovarian reserve parameters: a comparison between users and non-users of hormonal contraception. Reprod Biomed Online. 2012;25:612–9. Gullo G, Scaglione M, Cucinella G, Perino A, Chiantera V, D’Anna R, Laganà AS, Buzzaccarini G. Impact of assisted reproduction techniques on the neuro-psycho-motor outcome of newborns: a critical appraisal. J Obstet Gynaecol. 2022;42:2583–7. Berntsen S, Söderström-Anttila V, Wennerholm UB, Laivuori H, Loft A, Oldereid NB, Romundstad LB, Bergh C, Pinborg A. The health of children conceived by ART: ‘the chicken or the egg?‘. Hum Reprod Update. 2019;25:137–58. Gullo G, Scaglione M, Laganà AS, Perino A, Andrisani A, Chiantera V, Cucinella G, Gitas G, Barra F, Riemma G. Assisted Reproductive techniques and risk of congenital Heart Diseases in children: a systematic review and Meta-analysis. Reprod Sci 2023. Medenica S, Abazovic D, Ljubić A, Vukovic J, Begovic A, Cucinella G, Zaami S, Gullo G. The role of cell and Gene Therapies in the treatment of infertility in patients with thyroid autoimmunity. Int J Endocrinol. 2022;2022:4842316. Wang Q, Li X, Wang Q, Xie J, Xie C, Fu X. Heat shock pretreatment improves mesenchymal stem cell viability by heat shock proteins and autophagy to prevent cisplatin-induced granulosa cell apoptosis. Stem Cell Res Ther. 2019;10:348.