Potential barrier model incorporating localized states explaining tunnel anomalies

Journal of Applied Physics - Tập 58 Số 3 - Trang 1320-1325 - 1985
J. Halbritter1
1Kernforschungszentrum Karlsruhe GmbH, Institute für Kernphysik II, Postfach 3640, D-7500 Karlsruhe 1, Federal Republic of Germany

Tóm tắt

Most tunnel barriers contain localized electronic states nl(Δx, ε) in large amounts decreasing with distance Δx from the metal. The localized states hybridize with conduction electrons forming interface states with a decay width Δl∝exp(−2Δxκ) and a correlation energy ΔU* ∝ 1/εrΔx. For ΔU*>Δl these states are localized, which yields a strong coupling to surface plasmons, phonons, and spins. These states cause diffuse surface scattering and enhance exponentially [∝ Δ−1l  ∝exp(+2Δxκ)] the tunnel matrix element by resonant tunneling  jR as compared to tunneling jφ̄ through the whole potential barrier φ̄. Consequently at voltages ‖eU‖ <φ̄, jR(U,T) is identified by its stronger U and T dependencies and can even dominate over jφ̄. The enhanced interaction of the localized electrons with surface plasmons, phonons, and spins yield strong U, T, and time dependencies in the tunnel current which produce giant zero-bias anomaly and spin-flip zero-bias anomaly; capacitance changes; inelastic processes, noise, and barrier reduction with increasing temperature; and pair weakening, leakage current, and reduction of the Josephson current.

Từ khóa


Tài liệu tham khảo

1980, Appl. Phys. Lett., 51, 1010

1982, J. Appl. Phys., 53, 1563, 10.1063/1.330658

1982, IEEE Trans. Magn., MAG-18, 1571

1981, Phys. Rev. B, 24, 2278, 10.1103/PhysRevB.24.2278

1983, IEEE Trans. Magn., MAG-19, 799

1983, IEEE Trans. Magn., MAG-19, 807

1982, Phys. Rev. B, 26, 138, 10.1103/PhysRevB.26.138

1983, Solid State Commun., 46, 259, 10.1016/0038-1098(83)90264-8

1968, Phys. Rev., 165, 566, 10.1103/PhysRev.165.566

1970, Phys. Rev. B, 2, 3660, 10.1103/PhysRevB.2.3660

1985, IEEE Trans. Magn., MAG-21, 870

1984, Phys. Rev. Lett., 53, 1272, 10.1103/PhysRevLett.53.1272

1983, Z. Phys. B, 52, 95, 10.1007/BF01445289

1985, IEEE Trans. Magn., MAG-21, 858

1982, Surf. Sci., 122, 80, 10.1016/0039-6028(82)90060-7

1985, IEEE Trans. Magn., MAG-21, 862

1980, Solid State Commun., 34, 675, 10.1016/0038-1098(80)90953-9

1976, Solid State Commun., 18, 1447, 10.1016/0038-1098(76)90366-5

1984, Phys. Rev. B, 29, 4260, 10.1103/PhysRevB.29.4260

1966, Phys. Rev., 149, 491, 10.1103/PhysRev.149.491

1978, Z. Phys. B, 31, 19, 10.1007/BF01320123

1984, Appl. Phys. Lett., 45, 1240, 10.1063/1.95077

1983, Nucl. Phys. A, 405, 381, 10.1016/0375-9474(83)90578-X

1983, Phys. Lett., 127B, 313

1984, J. Appl. Phys., 56, 819, 10.1063/1.334014

1984, Phys. Rev. Lett., 52, 228, 10.1103/PhysRevLett.52.228