Postsynaptic regulation of the development and long‐term plasticity of <i>Aplysia</i> sensorimotor synapses in cell culture

Wiley - Tập 25 Số 6 - Trang 666-693 - 1994
David L. Glanzman1
1Department of Physiological Science, University of California, Los Angeles, California 90024-1568

Tóm tắt

AbstractThe monosynaptic component of the neuronal circuit that mediates the withdrawal reflex of Aplysia californica can be reconstituted in dissociated cell culture. Study of these in vitro monosynaptic connections has yielded insights into the basic cellular mechanisms of synaptogenesis and long‐term synaptic plasticity. One such insight has been that the development of the presynaptic sensory neurons is strongly regulated by the postsynaptic motor neuron. Sensory neurons which have been cocultured with a target motor neuron have more elaborate structures—characterized by neurites with more branches and varicosities—than do sensory neurons grown alone in culture or sensory neurons that have been cocultured with an inappropriate target cell. Another way in which the motor neuron regulates the development of sensory neurons is apparent when sensorimotor cocultures with two presynaptic cells are examined. In such cocultures the outgrowth from the different presynaptic cells is obviously segregated on the processes of the postsynaptic cell. By contrast, when two sensory neurons are placed into cell culture without a motor neuron, thier processes readily grow together. In addition to regulating the in vitro development of sensory neurons, the motor neuron also regulates learning‐related changes in the structure of sensory neurons. Application of the endogenous facilitatory trasmitter serotonin (5‐HT) causes long‐term facilitation of in vitro sensorimotor synapses due in part to growth of new presynatpic varicosities. But 5‐HT applied to sensory neurons alone in cultuer does not produce structural changes in these cells. More recently it has been found that sensorimotor synapses in cell culture can exhibit long‐term potentiation (LTP). Like LTP of some hippocampal synapses, LTP of in vitro Aplysia syanpses is regulated by the voltage of the postsynaptic cell. Pairing high‐frequency stimulation of sensory neurons with strong hyperpolarization of the motor neuron blocks the induction of LTP. Moreover, LTP of sensorimotor synapses can be induced in Hebbian fashion by pairing weak presynaptic stimulation with strong postsynaptic depolarization. These findings implicate a Habbian mechanism in classical conditioning in Aplysia. They also indicate that Hebbian LTP is a phylogenetically ancient form of synaptic plasticity. 1994 John Wiley & Sons, Inc.

Từ khóa


Tài liệu tham khảo

10.1007/BF00711089

10.1038/349067a0

10.1126/science.6828885

10.1073/pnas.85.7.2373

10.1126/science.1585177

Bank M., 1992, Segregation of presynaptic inputs on an identified target neuron in vitro : structural remodeling visualized over time, J. Neurosci., 12, 2969, 10.1523/JNEUROSCI.12-08-02960.1992

10.1073/pnas.82.17.5978

Bear M. F., 1990, Disruption of experience‐dependent synaptic modification in striate cortex by infusion of an NMDA receptor antagonist, J. Neurosci., 10, 909, 10.1523/JNEUROSCI.10-03-00909.1990

10.1038/346724a0

10.1038/361031a0

10.1101/SQB.1990.055.01.015

10.1016/0014-2999(91)90505-K

10.1073/pnas.86.20.8113

10.1038/347768a0

Carew T. J., 1984, A test of Hebb's postulate at identified synapses which mediate classical conditioning in Aplysia, J. Neurosci., 4, 1217, 10.1523/JNEUROSCI.04-05-01217.1984

10.1126/science.6681571

10.1146/annurev.ne.09.030186.002251

Carew T. J., 1981, Classical conditioning in a simple withdrawal reflex in Aplysia californica, J. Neurosci., 1, 1426, 10.1523/JNEUROSCI.01-12-01426.1981

10.1073/pnas.71.12.5004

10.1126/science.11560

10.1016/0166-2236(91)90071-2

10.1113/jphysiol.1983.sp014478

10.1101/SQB.1990.055.01.043

10.1146/annurev.ne.11.030188.000425

10.1113/jphysiol.1990.sp017941

10.1073/pnas.90.15.7163

10.1126/science.2892269

10.1126/science.1317971

10.1126/science.8235598

10.1007/BF00580998

10.1016/0166-2236(93)90140-H

Eliot L. S., 1994, Pairing‐specific, activity‐dependent presynaptic facilitation at Aplysia sensorymotor neuron synapses in isolated cell culture, J. Neurosci., 14, 368, 10.1523/JNEUROSCI.14-01-00368.1994

Elphick M. R., 1993, Nitric oxide signalling in invertebrate nervous systems, Soc. Neurosci. Abstr., 19, 1172

10.1002/hipo.450010108

10.1002/neu.480190402

10.1016/0165-0270(81)90003-0

10.1016/0896-6273(92)90185-G

10.1523/JNEUROSCI.09-12-04200.1989

10.1016/0896-6273(89)90203-1

10.1126/science.2389145

10.1016/0896-6273(91)90336-X

Goldberg D. J., 1991, Culturing Nerve Cells, 155

Goodman C. S., 1993, Developmental mechanisms that generate precise patterns of neuronal connectivity, Neuronin, 10, 77

10.1126/science.1361685

10.1038/347477a0

10.1126/science.493992

10.1038/354076a0

10.1126/science.7444449

10.1016/0896-6273(92)90288-O

10.1126/science.6294833

Hebb D. O., 1949, The Organization of Behavior

10.1038/366562a0

Huybel D. H., 1965, Binocular in teraction in striate cortex of kittens reared with artifical squint, J. Neurophysiol., 28, 1041, 10.1152/jn.1965.28.6.1041

Hubel D. H., 1977, Plasticity of ocular dominance columns in the monkey striate cortex, Philos. Trans. R. Soc. London (B), 278, 419

10.1038/367175a0

Keith J. R., 1990, Why NMDA‐receptor‐dependent long‐term potentiation may not be a mechanism of learning and memory: reappraisal of the NMDA‐receptor blockade strategy, Psychobiology, 18, 251, 10.3758/BF03327238

10.1083/jcb.111.6.2637

10.1073/pnas.83.14.5326

10.1126/science.2443978

10.1016/0166-2236(91)90042-S

10.1073/pnas.79.17.5430

10.1038/357240a0

10.1016/0896-6273(92)90075-O

10.1038/360070a0

10.1016/0896-6273(92)90068-O

Law M. I., 1981, Anatomy and physiology of experimentally produced striped tecta, J. Neurosci., 1, 741, 10.1523/JNEUROSCI.01-07-00741.1981

10.1002/cne.901790113

10.1016/0896-6273(92)90068-O

Lin X. Y., 1993, Long‐term potentiation of Aplysia sensorimotor synapses in cell culture, Soc. Neurosci. Abstr., 19, 17

10.1098/rspb.1994.0016

10.1098/rspb.1994.0031

10.1126/science.1658939

10.1038/323538a0

Lukowiak K., 1993, Nitric oxide in molluscs: localization and putative role, Soc. Neurosci. Abstr., 19, 1172

10.1038/305719a0

10.1073/pnas.84.23.8730

10.1523/JNEUROSCI.09-12-04227.1989

10.1038/320529a0

10.1038/346177a0

10.1038/355050a0

10.1126/science.3388032

10.1038/357134a0

10.1126/science.1585176

10.1073/pnas.86.13.5183

Miller M. W., 1987, Cooperativity‐dependent long‐lasting potentiation in the crayfish lateral giant excape reaction circuit, J. Neurosci., 7, 1081, 10.1523/JNEUROSCI.07-04-01081.1987

10.1126/science.3775383

10.1038/333171a0

10.1101/SQB.1990.055.01.019

10.1038/354073a0

10.1073/pnas.88.24.11285

10.1002/syn.890090106

10.1101/SQB.1990.055.01.030

Purves D., 1985, Principles of Neural Development

10.1126/science.7302569

Rayport S. G., 1986, Synaptic plasticity in vitro :cell culture of identified Aplysia neurons mediating short‐term habituation and sensitization, J. Neurosci., 6, 759, 10.1523/JNEUROSCI.06-03-00759.1986

10.1073/pnas.85.10.3623

Sánchez‐Alvarez M., 1993, Distribution of putative nitric oxide producing neurons in perioesophageal ganglia of Helix asperas, Soc. Neurosci. Abst., 19, 1172

10.1101/SQB.1990.055.01.021

10.1016/0896-6273(93)90056-W

10.1016/0896-6273(91)90166-W

Schacher S., 1990, Selective shor‐ and long‐term effects of serotonin, small cardioactive peptide, and tetanic stimulation on sensorimotor synapses of Aplysia in culture, J. Neurosci., 10, 3286, 10.1523/JNEUROSCI.10-10-03286.1990

10.1126/science.1720572

10.1126/science.8290963

10.1016/0006-8993(75)90817-3

10.1126/science.1378648

10.1126/science.1321493

10.1523/JNEUROSCI.06-01-00234.1986

10.1073/pnas.70.4.997

Stevens C. F., 1993, Quantal release of neurotransmitter and long‐term potentiation, Neuron, 10, 55

10.1038/364147a0

Tessier‐Lavigne M., 1992, Axon guidance bny molecular gradients. Curr. Opin, Neurobiol., 2, 60

Trudeau L. E., 1993, Excitatory amino acid neurotransmission at sesory‐motor and interneuronal synapses of Aplysia california, J. Neurophysiol., 70, 1221, 10.1152/jn.1993.70.3.1221

10.1126/science.7678352

Wallace C. S., 1991, Long‐Term Potentiation: A Debate of Current Issue, 189

10.1126/science.6294834

Walters E. T., 1985, Long‐term enhancemement produced by activity‐dependent modulation of Aplysia sensory neurons, J. Neurosci., 5, 662, 10.1523/JNEUROSCI.05-03-00662.1985

10.1152/jn.1965.28.6.1029

10.1111/j.1748-1716.1986.tb07822.x

10.1016/0896-6273(93)90117-A

Winlow W., 1993, Are nitric oxide and free radicals of oxygen intercellular messengers in the molluscan CNS?, Soc. Neurosci. Abstr., 19, 1172

10.1007/BF01922555

10.1126/science.8100368

10.1146/annurev.ne.12.030189.000305