Rối loạn vận động hậu synapse: các kiểu hình lâm sàng, kiểu gen và cơ chế bệnh lý

Journal of Inherited Metabolic Disease - Tập 41 - Trang 1077-1091 - 2018
Lucia Abela1, Manju A. Kurian1,2
1Molecular Neurosciences, Developmental Neuroscience, UCL Institute of Child Health, London, UK
2Developmental Neurosciences Programme, UCL GOS - Institute of Child Health, London, UK

Tóm tắt

Rối loạn vận động bao gồm một nhóm các bệnh đa dạng với các kiểu hình lâm sàng thường phức tạp. Các triệu chứng chồng chéo và sự thiếu hụt các biomarker chẩn đoán có thể cản trở việc đưa ra chẩn đoán chính xác. Các kỹ thuật giải trình tự thế hệ mới đã đóng góp đáng kể vào việc tìm hiểu các nguyên nhân di truyền gây ra rối loạn vận động và do đó đã cải thiện khả năng chẩn đoán. Sự thiếu hụt trong tín hiệu dopamine ở các nơron gai giữa hậu synapse đang nổi lên như một cơ chế gây bệnh trong một số rối loạn vận động cường động mới được xác định. Một số gen gây bệnh mã hóa các thành phần của con đường cAMP, một con đường tín hiệu hậu synapse quan trọng trong các nơron gai giữa. Tại đây, chúng tôi xem xét sự trình bày lâm sàng, tìm kiếm di truyền và cơ chế bệnh tật đặc trưng cho các rối loạn vận động hậu synapse di truyền này.

Từ khóa

#Rối loạn vận động; kiểu hình lâm sàng; di truyền; cơ chế bệnh lý; tín hiệu dopamine

Tài liệu tham khảo

Alcacer C, Santini E, Valjent E et al (2012) G olf mutation allows parsing the role of cAMP-dependent and extracellular signal-regulated kinase-dependent signaling in L-3,4-Dihydroxyphenylalanine-induced dyskinesia. J Neurosci 32:5900–5910. https://doi.org/10.1523/JNEUROSCI.0837-12.2012 Alkufri F, Shaag A, Abu-Libdeh B, Elpeleg O (2016) Deleterious mutation in GPR88 is associated with chorea, speech delay, and learning disabilities. Neurol Genet 2:e64. https://doi.org/10.1212/NXG.0000000000000064 Ananth AL, Robichaux-Viehoever A, Kim Y-M et al (2016) Clinical course of six children with GNAO1 mutations causing a severe and distinctive movement disorder. Pediatr Neurol 59:81–84. https://doi.org/10.1016/j.pediatrneurol.2016.02.018 Arya R, Spaeth C, Gilbert DL et al (2017) GNAO1-associated epileptic encephalopathy and movement disorders: c.607G> a variant represents a probable mutation hotspot with a distinct phenotype. Epileptic Disord 19:67–75. https://doi.org/10.1684/epd.2017.0888 Baker K, Gordon SL, Grozeva D et al (2015) Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling. J Clin Invest 125:1670–1678. https://doi.org/10.1172/JCI79765 Bao L, Patel JC, Walker RH et al (2010) Dysregulation of striatal dopamine release in a mouse model of dystonia. J Neurochem 114:1781–1791. https://doi.org/10.1111/j.1471-4159.2010.06890.x Bayés À, van de Lagemaat LN, Collins MO et al (2011) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14:19–21. https://doi.org/10.1038/nn.2719 Beaumont V, Zhong S, Lin H et al (2016) Phosphodiesterase 10A inhibition improves cortico-basal ganglia function in Huntington’s disease models. Neuron 92:1220–1237. https://doi.org/10.1016/j.neuron.2016.10.064 Bonifati V (2014) Genetics of Parkinson’s disease—state of the art, 2013. Parkinsonism Relat Disord 20:S23–S28. https://doi.org/10.1016/S1353-8020(13)70009-9 Bressman SB, Heiman GA, Nygaard TG et al (1994) A study of idiopathic torsion dystonia in a non-Jewish family: evidence for genetic heterogeneity. Neurology 44:283–287 Brown DA, Sihra TS (2008) Presynaptic signaling by heterotrimeric G-proteins. Handb Exp Pharmacol (184):207–260. https://doi.org/10.1007/978-3-540-74805-2_8 Bruun TUJ, DesRoches C-L, Wilson D et al (2017) Prospective cohort study for identification of underlying genetic causes in neonatal encephalopathy using whole-exome sequencing. Genet Med. https://doi.org/10.1038/gim.2017.129 Calabresi P, Pisani A, Rothwell J et al (2016) Hyperkinetic disorders and loss of synaptic downscaling. Nat Neurosci 19:868–875. https://doi.org/10.1038/nn.4306 Caleo M (2009) Epilepsy: synapses stuck in childhood. Nat Med 15:1126–1127. https://doi.org/10.1038/nm1009-1126 Calo L, Wegrzynowicz M, Santivañez-Perez J, Grazia Spillantini M (2016) Synaptic failure and α-synuclein. Mov Disord 31:169–177. https://doi.org/10.1002/mds.26479 Carapito R, Paul N, Untrau M et al (2015) A de novo ADCY5 mutation causes early-onset autosomal dominant chorea and dystonia. Mov Disord 30:423–427. https://doi.org/10.1002/mds.26115 Carbon M, Niethammer M, Peng S et al (2009) Abnormal striatal and thalamic dopamine neurotransmission: genotype-related features of dystonia. Neurology 72:2097–2103. https://doi.org/10.1212/WNL.0b013e3181aa538f Carecchio M, Panteghini C, Reale C et al (2016) Novel GNAL mutation with intra-familial clinical heterogeneity: expanding the phenotype. Parkinsonism Relat Disord 23:66–71. https://doi.org/10.1016/j.parkreldis.2015.12.012 Carecchio M, Mencacci NE, Iodice A et al (2017) ADCY5-related movement disorders: frequency, disease course and phenotypic variability in a cohort of paediatric patients. Parkinsonism Relat Disord 41:37–43. https://doi.org/10.1016/j.parkreldis.2017.05.004 Casillas-Espinosa PM, Powell KL, O’Brien TJ (2012) Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53:41–58. https://doi.org/10.1111/epi.12034 Chang FCF, Westenberger A, Dale RC et al (2016) Phenotypic insights into ADCY5-associated disease. Mov Disord 31:1033–1040. https://doi.org/10.1002/mds.26598 Chen Y-Z, Matsushita MM, Robertson P et al (2012) Autosomal dominant familial dyskinesia and facial myokymia: single exome sequencing identifies a mutation in adenylyl cyclase 5. Arch Neurol 69:630–635. https://doi.org/10.1001/archneurol.2012.54 Chen Y-Z, Friedman JR, Chen D-H et al (2014) Gain-of-function ADCY5 mutations in familial dyskinesia with facial myokymia. Ann Neurol 75:542–549. https://doi.org/10.1002/ana.24119 Chen D-H, Méneret A, Friedman JR et al (2015) ADCY5-related dyskinesia. Neurology 85:2026–2035. https://doi.org/10.1212/WNL.0000000000002058 Chuhma N, Tanaka KF, Hen R, Rayport S (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31:1183–1192. https://doi.org/10.1523/JNEUROSCI.3833-10.2011 Corvol JC, Studler JM, Schonn JS et al (2001) Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 76:1585–1588 Coskran TM, Morton D, Menniti FS et al (2006) Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem 54:1205–1213. https://doi.org/10.1369/jhc.6A6930.2006 Crittenden JR, Graybiel AM (2011) Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59. https://doi.org/10.3389/fnana.2011.00059 Crocker-Buque A, Currie SP, Luz LL et al (2016) Altered thalamocortical development in the SAP102 knockout model of intellectual disability. Hum Mol Genet 25:4052–4061. https://doi.org/10.1093/hmg/ddw244 Dan’ura T, Kurokawa T, Yamashita A et al (1988) Inhibition of rat brain adenylate cyclase activity by benzodiazepine through the effects on Gi and catalytic proteins. Life Sci 42:469–475 Danti FR, Galosi S, Romani M et al (2017) GNAO1 encephalopathy. Neurol Genet 3:e143. https://doi.org/10.1212/NXG.0000000000000143 De Rubeis S, He X, Goldberg AP et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–215. https://doi.org/10.1038/nature13772 DeLong MR, Wichmann T et al (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20. https://doi.org/10.1001/archneur.64.1.20 Diggle CP, Sukoff Rizzo SJ, Popiolek M et al (2016) Biallelic mutations in PDE10A lead to loss of striatal PDE10A and a hyperkinetic movement disorder with onset in infancy. Am J Hum Genet 98:735–743. https://doi.org/10.1016/j.ajhg.2016.03.015 Dobričić V, Kresojević N, Westenberger A et al (2014) De novo mutation in the GNAL gene causing seemingly sporadic dystonia in a Serbian patient. Mov Disord 29:1190–1193. https://doi.org/10.1002/mds.25876 Douglas AGL, Andreoletti G, Talbot K et al (2017) ADCY5-related dyskinesia presenting as familial myoclonus-dystonia. Neurogenetics 18:111–117. https://doi.org/10.1007/s10048-017-0510-z Dy ME, Chang FCF, Jesus SD et al (2016) Treatment of ADCY5-associated dystonia, chorea, and hyperkinetic disorders with deep brain stimulation: a multicenter case series. J Child Neurol 31:1027–1035. https://doi.org/10.1177/0883073816635749 Esposito S, Carecchio M, Tonduti D et al (2017) A PDE10A de novo mutation causes childhood-onset chorea with diurnal fluctuations. Mov Disord. https://doi.org/10.1002/mds.27175 Feng H, Sjögren B, Karaj B et al (2017a) Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations. Neurology 89:762–770. https://doi.org/10.1212/WNL.0000000000004262 Feng H, Sjögren B, Karaj B et al (2017b) Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations. Neurology. https://doi.org/10.1212/WNL.0000000000004262 Fernandez M, Raskind W, Wolff J et al (2001) Familial dyskinesia and facial myokymia (FDFM): a novel movement disorder. Ann Neurol 49:486–492 Fisone G, Håkansson K, Borgkvist A, Santini E (2007) Signaling in the basal ganglia: postsynaptic and presynaptic mechanisms. Physiol Behav 92:8–14. https://doi.org/10.1016/j.physbeh.2007.05.028 Fromer M, Pocklington AJ, Kavanagh DH et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–184. https://doi.org/10.1038/nature12929 Fuchs T, Saunders-Pullman R, Masuho I et al (2012) Mutations in GNAL cause primary torsion dystonia. Nat Genet 45:88–92. https://doi.org/10.1038/ng.2496 Gerber KJ, Squires KE, Hepler JR (2016) Roles for regulator of G protein signaling proteins in synaptic signaling and plasticity. Mol Pharmacol 89:273–286. https://doi.org/10.1124/mol.115.102210 Giovedí S, Corradi A, Fassio A, Benfenati F (2014) Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Pediatr 2:94. https://doi.org/10.3389/fped.2014.00094 Guarnieri FC, Pozzi D, Raimondi A et al (2017) A novel SYN1 missense mutation in non-syndromic X-linked intellectual disability affects synaptic vesicle life cycle, clustering and mobility. Hum Mol Genet 26:4699–4714. https://doi.org/10.1093/hmg/ddx352 Hamdan FF, Piton A, Gauthier J et al (2009) De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Ann Neurol 65:748–753. https://doi.org/10.1002/ana.21625 Hanoune J, Pouille Y, Tzavara E et al (1997) Adenylyl cyclases: structure, regulation and function in an enzyme superfamily. Mol Cell Endocrinol 128:179–194 Hervé D, Le Moine C, Corvol JC et al (2001) Galpha(olf) levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J Neurosci 21:4390–4399 Hunn BHM, Cragg SJ, Bolam JP et al (2015) Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci 38:178–188. https://doi.org/10.1016/j.tins.2014.12.009 Hyman SE (2005) Neurotransmitters. Curr Biol 15:R154–R158. https://doi.org/10.1016/j.cub.2005.02.037 Iwamoto T, Okumura S, Iwatsubo K et al (2003) Motor dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem 278:16936–16940. https://doi.org/10.1074/jbc.C300075200 Jahanshahi M (2017) Neuropsychological and neuropsychiatric features of idiopathic and DYT1 dystonia and the impact of medical and surgical treatment. Arch Clin Neuropsychol 32:888–905. https://doi.org/10.1093/arclin/acx095 Jang M, Um KB, Jang J et al (2015) Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons. Sci Rep 5:14773. https://doi.org/10.1038/srep14773 Jiang M, Bajpayee NS (2009) Molecular mechanisms of go signaling. Neurosignals 17:23–41. https://doi.org/10.1159/000186688 Jiang M, Gold MS, Boulay G et al (1998) Multiple neurological abnormalities in mice deficient in the G protein Go. Proc Natl Acad Sci U S A 95:3269–3274 Joch M, Ase AR, CX-Q C et al (2007) Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol Biol Cell 18:3105–3118. https://doi.org/10.1091/mbc.E05-11-1027 Johannesen K, Marini C, Pfeffer S et al (2016) Phenotypic spectrum of GABRA1. Neurology 87:1140–1151. https://doi.org/10.1212/WNL.0000000000003087 Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. https://doi.org/10.1016/S0140-6736(14)61393-3 Kang HJ, Voleti B, Hajszan T et al (2012) Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 18:1413–1417. https://doi.org/10.1038/nm.2886 Kehrl JM, Sahaya K, Dalton HM et al (2014) Gain-of-function mutation in Gnao1: a murine model of epileptiform encephalopathy (EIEE17)? Mamm Genome 25:202–210. https://doi.org/10.1007/s00335-014-9509-z Kingwell K (2013) Epilepsy: GRIN2A mutations identified as key genetic drivers of epilepsy–aphasia spectrum disorders. Nat Rev Neurol 9:541–541. https://doi.org/10.1038/nrneurol.2013.181 Kononenko NL, Haucke V (2015) Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 85:484–496. https://doi.org/10.1016/j.neuron.2014.12.016 Kulkarni N, Tang S, Bhardwaj R et al (2016) Progressive movement disorder in brothers carrying a GNAO1 mutation responsive to deep brain stimulation. J Child Neurol 31:211–214. https://doi.org/10.1177/0883073815587945 Kurian MA, Dale RC (2016) Movement disorders presenting in childhood. Contin Lifelong Learn Neurol 22:1159–1185. https://doi.org/10.1212/CON.0000000000000367 Law C-Y, Chang ST-L, Cho SY et al (2015) Clinical whole-exome sequencing reveals a novel missense pathogenic variant of GNAO1 in a patient with infantile-onset epilepsy. Clin Chim Acta 451:292–296. https://doi.org/10.1016/j.cca.2015.10.011 Lee K-W, Hong J-H, Choi IY et al (2002) Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J Neurosci 22:7931–7940 Lepeta K, Lourenco MV, Schweitzer BC et al (2016) Synaptopathies: synaptic dysfunction in neurological disorders—a review from students to students. J Neurochem 138:785–805. https://doi.org/10.1111/jnc.13713 Lin MK, Farrer MJ (2014) Genetics and genomics of Parkinson’s disease. Genome Med 6:48. https://doi.org/10.1186/gm566 Lipstein N, Verhoeven-Duif NM, Michelassi FE et al (2017) Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. J Clin Invest 127:1005–1018. https://doi.org/10.1172/JCI90259 Lynch-Day MA, Mao K, Wang K et al (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357–a009357. https://doi.org/10.1101/cshperspect.a009357 Marcé-Grau A, Dalton J, López-Pisón J et al (2016) GNAO1 encephalopathy: further delineation of a severe neurodevelopmental syndrome affecting females. Orphanet J Rare Dis 11:38. https://doi.org/10.1186/s13023-016-0416-0 Massart R, Guilloux J-P, Mignon V et al (2009) Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents. Eur J Neurosci 30:397–414. https://doi.org/10.1111/j.1460-9568.2009.06842.x Masuho I, Fang M, Geng C et al (2016) Homozygous GNAL mutation associated with familial childhood-onset generalized dystonia. Neurol Genet 2:e78. https://doi.org/10.1212/NXG.0000000000000078 Matikainen-Ankney BA, Kezunovic N, Mesias RE et al (2016) Altered development of synapse structure and function in striatum caused by Parkinson’s disease-linked LRRK2-G2019S mutation. J Neurosci 36:7128–7141. https://doi.org/10.1523/JNEUROSCI.3314-15.2016 Matsuoka I, Suzuki Y, Defer N et al (1997) Differential expression of type I, II, and V adenylyl cyclase gene in the postnatal developing rat brain. J Neurochem 68:498–506 Meijer IA, Miravite J, Kopell BH, Lubarr N (2017) Deep brain stimulation in an additional patient with ADCY5-related movement disorder. J Child Neurol 32:438–439. https://doi.org/10.1177/0883073816681353 Meirsman AC, Le Merrer J, Pellissier LP et al (2016) Mice lacking GPR88 show motor deficit, improved spatial learning, and low anxiety reversed by delta opioid antagonist. Biol Psychiatry 79:917–927. https://doi.org/10.1016/j.biopsych.2015.05.020 Mencacci NE, Erro R, Wiethoff S et al (2015) ADCY5 mutations are another cause of benign hereditary chorea. Neurology 85:80–88. https://doi.org/10.1212/WNL.0000000000001720 Mencacci NE, Kamsteeg E-J, Nakashima K et al (2016) De novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet 98:763–771. https://doi.org/10.1016/j.ajhg.2016.02.015 Menke LA, Engelen M, Alders M et al (2016) Recurrent GNAO1 mutations associated with developmental delay and a movement disorder. J Child Neurol 31:1598–1601. https://doi.org/10.1177/0883073816666474 Menniti FS, Chappie TA, Humphrey JM, Schmidt CJ (2007) Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia. Curr Opin Investig Drugs 8:54–59 Mircsof D, Langouët M, Rio M et al (2015) Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects. Nat Neurosci 18:1731–1736. https://doi.org/10.1038/nn.4169 Morigaki R, Goto S (2015) Postsynaptic density protein 95 in the striosome and matrix compartments of the human neostriatum. Front Neuroanat 9:154. https://doi.org/10.3389/fnana.2015.00154 Musardo S, Marcello E (2017) Synaptic dysfunction in Alzheimer’s disease: from the role of amyloid β-peptide to the α-secretase ADAM10. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2017.06.018 Myers CT, Stong N, Mountier EI et al (2017) De novo mutations in PPP3CA cause severe neurodevelopmental disease with seizures. Am J Hum Genet 101:516–524. https://doi.org/10.1016/j.ajhg.2017.08.013 Nairn AC, Svenningsson P, Nishi A et al (2004) The role of DARPP-32 in the actions of drugs of abuse. Neuropharmacology 47:14–23. https://doi.org/10.1016/j.neuropharm.2004.05.010 Nakamura K, Kodera H, Akita T et al (2013) De novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet 93:496–505. https://doi.org/10.1016/j.ajhg.2013.07.014 Napolitano F, Pasqualetti M, Usiello A et al (2010) Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia. Neurobiol Dis 38:434–445. https://doi.org/10.1016/j.nbd.2010.03.003 Niturad CE, Lev D, Kalscheuer VM et al (2017) Rare GABRA3 variants are associated with epileptic seizures. encephalopathy and dysmorphic features Brain 140:2879–2894. https://doi.org/10.1093/brain/awx236 Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71. https://doi.org/10.1038/nrm2299 Olgiati S, Quadri M, Bonifati V (2016) Genetics of movement disorders in the next-generation sequencing era. Mov Disord 31:458–470. https://doi.org/10.1002/mds.26521 Ozelius L, Lubarr N (1993) DYT1 early-onset isolated dystonia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews® [Internet]. University of Washington, Seattle Page ME, Bao L, Andre P et al (2010) Cell-autonomous alteration of dopaminergic transmission by wild type and mutant (DeltaE) TorsinA in transgenic mice. Neurobiol Dis 39:318–326. https://doi.org/10.1016/j.nbd.2010.04.016 Pickrell AM, Youle RJ (2015) The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273. https://doi.org/10.1016/j.neuron.2014.12.007 Pisani A, Martella G, Tscherter A et al (2006) Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia. Neurobiol Dis 24:318–325. https://doi.org/10.1016/j.nbd.2006.07.006 Puschmann A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Park Relat Disord 19:407–415 Quartarone A, Pisani A (2011) Abnormal plasticity in dystonia: disruption of synaptic homeostasis. Neurobiol Dis 42:162–170. https://doi.org/10.1016/j.nbd.2010.12.011 Quintana A, Sanz E, Wang W et al (2012) Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nat Neurosci 15:1547–1555. https://doi.org/10.1038/nn.3239 Raheem IT, Schreier JD, Fuerst J et al (2016) Discovery of pyrazolopyrimidine phosphodiesterase 10A inhibitors for the treatment of schizophrenia. Bioorg Med Chem Lett 26:126–132. https://doi.org/10.1016/j.bmcl.2015.11.013 Reale C, Panteghini C, Carecchio M, Garavaglia B (2018) The relevance of gene panels in movement disorders diagnosis: a lab perspective. Eur J Paediatr Neurol 22:285–291. https://doi.org/10.1016/j.ejpn.2018.01.013 Rizo J, Xu J (2015) The synaptic vesicle release machinery. Annu Rev Biophys 44:339–367. https://doi.org/10.1146/annurev-biophys-060414-034057 Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57–69. https://doi.org/10.1038/nrn1583 Sadybekov A, Tian C, Arnesano C et al (2017) An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat Commun 8:601. https://doi.org/10.1038/s41467-017-00472-0 Saitsu H, Fukai R, Ben-Zeev B et al (2016) Phenotypic spectrum of GNAO1 variants: epileptic encephalopathy to involuntary movements with severe developmental delay. Eur J Hum Genet 24:129–134. https://doi.org/10.1038/ejhg.2015.92 Sakamoto S, Monden Y, Fukai R et al (2017) A case of severe movement disorder with GNAO1 mutation responsive to topiramate. Brain and Development 39:439–443. https://doi.org/10.1016/j.braindev.2016.11.009 Sassone J, Serratto G, Valtorta F et al (2017) The synaptic function of parkin. Brain. https://doi.org/10.1093/brain/awx006 Schirinzi T, Madeo G, Martella G et al (2016) Early synaptic dysfunction in Parkinson’s disease: insights from animal models. Mov Disord 31:802–813. https://doi.org/10.1002/mds.26620 Schmidt CJ, Chapin DS, Cianfrogna J et al (2008) Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325:681–690. https://doi.org/10.1124/jpet.107.132910 Schorling D, Dietel T, Evers C et al (2017) Expanding phenotype of de novo mutations in GNAO1: four new cases and review of literature. Neuropediatrics. https://doi.org/10.1055/s-0037-1603977 Shen D, Hernandez CC, Shen W et al (2017) De novo GABRG2 mutations associated with epileptic encephalopathies. Brain 140:49–67. https://doi.org/10.1093/brain/aww272 Sheng M, Kim E (2011) The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol 3:a005678–a005678. https://doi.org/10.1101/cshperspect.a005678 Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808 Soykan T, Maritzen T, Haucke V (2016) Modes and mechanisms of synaptic vesicle recycling. Curr Opin Neurobiol 39:17–23. https://doi.org/10.1016/j.conb.2016.03.005 Stoessl AJ, Mckeown MJ (2016) Movement disorders. Handb Clin Neurol 136:957–969. https://doi.org/10.1016/B978-0-444-53486-6.00049-1 Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294:366–368 Strick CA, James LC, Fox CB et al (2010) Alterations in gene regulation following inhibition of the striatum-enriched phosphodiesterase, PDE10A. Neuropharmacology 58:444–451. https://doi.org/10.1016/j.neuropharm.2009.09.008 Südhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690. https://doi.org/10.1016/j.neuron.2013.10.022 Talvik I, Møller RS, Vaher M et al (2015) Clinical phenotype of de novo GNAO1 mutation: case report and review of literature. Child Neurol Open 2. https://doi.org/10.1177/2329048X15583717 Threlfell S, Sammut S, Menniti FS et al (2009) Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation. J Pharmacol Exp Ther 328:785–795. https://doi.org/10.1124/jpet.108.146332 Torres GE, Sweeney AL, Beaulieu J-M et al (2004) Effect of torsinA on membrane proteins reveals a loss of function and a dominant-negative phenotype of the dystonia-associated DeltaE-torsinA mutant. Proc Natl Acad Sci U S A 101:15650–15655. https://doi.org/10.1073/pnas.0308088101 Tunc S, Brüggemann N, Baaske MK et al (2017) Facial twitches in ADCY5-associated disease—myokymia or myoclonus? An electromyography study. Parkinsonism Relat Disord 40:73–75. https://doi.org/10.1016/j.parkreldis.2017.04.013 Ung DC, Iacono G, Méziane H et al (2017) Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Mol Psychiatry. https://doi.org/10.1038/mp.2017.39 Vemula SR, Puschmann A, Xiao J et al (2013) Role of Gα(olf) in familial and sporadic adult-onset primary dystonia. Hum Mol Genet 22:2510–2519. https://doi.org/10.1093/hmg/ddt102 Waak M, Mohammad SS, Coman D et al (2017) GNAO1-related movement disorder with life-threatening exacerbations: movement phenomenology and response to DBS. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2017-315653 Waites CL, Garner CC (2011) Presynaptic function in health and disease. Trends Neurosci 34:326–337. https://doi.org/10.1016/j.tins.2011.03.004 Westenberger A, Max C, Brüggemann N et al (2017) Alternating hemiplegia of childhood as a new presentation of adenylate cyclase 5-mutation-associated disease: a report of two cases. J Pediatr 181:306–308.e1. https://doi.org/10.1016/j.jpeds.2016.10.079 Yang X, Qian P, Xu X et al (2017) GRIN2A mutations in epilepsy-aphasia spectrum disorders. Brain and Development. https://doi.org/10.1016/j.braindev.2017.09.007 Yilmaz S, Turhan T, Ceylaner S et al (2016) Excellent response to deep brain stimulation in a young girl with GNAO1-related progressive choreoathetosis. Childs Nerv Syst 32:1567–1568. https://doi.org/10.1007/s00381-016-3139-6 Zapata J, Moretto E, Hannan S et al (2017) Epilepsy and intellectual disability linked protein Shrm4 interaction with GABABRs shapes inhibitory neurotransmission. Nat Commun 8:14536. https://doi.org/10.1038/ncomms14536 Zech M, Boesch S, Jochim A et al (2017) Clinical exome sequencing in early-onset generalized dystonia and large-scale resequencing follow-up. Mov Disord 32:549–559. https://doi.org/10.1002/mds.26808 Zhuang X, Belluscio L, Hen R (2000) G(olf)alpha mediates dopamine D1 receptor signaling. J Neurosci 20:RC91 Ziegan J, Wittstock M, Westenberger A et al (2014) Novel GNAL mutations in two German patients with sporadic dystonia. Mov Disord 29:1833–1834. https://doi.org/10.1002/mds.26066