Postexercise muscle glycogen resynthesis in humans

Journal of Applied Physiology - Tập 122 Số 5 - Trang 1055-1067 - 2017
Louise M. Burke1,2, Luc J. C. van Loon1,3, John A. Hawley1,4
1Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia;
2Department of Sport Nutrition, Australian Institute of Sport, Belconnen, Australia;
3NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
4Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom

Tóm tắt

Since the pioneering studies conducted in the 1960s in which glycogen status was investigated using the muscle biopsy technique, sports scientists have developed a sophisticated appreciation of the role of glycogen in cellular adaptation and exercise performance, as well as sites of storage of this important metabolic fuel. While sports nutrition guidelines have evolved during the past decade to incorporate sport-specific and periodized manipulation of carbohydrate (CHO) availability, athletes attempt to maximize muscle glycogen synthesis between important workouts or competitive events so that fuel stores closely match the demands of the prescribed exercise. Therefore, it is important to understand the factors that enhance or impair this biphasic process. In the early postexercise period (0–4 h), glycogen depletion provides a strong drive for its own resynthesis, with the provision of CHO (~1 g/kg body mass) optimizing this process. During the later phase of recovery (4–24 h), CHO intake should meet the anticipated fuel needs of the training/competition, with the type, form, and pattern of intake being less important than total intake. Dietary strategies that can enhance glycogen synthesis from suboptimal amounts of CHO or energy intake are of practical interest to many athletes; in this scenario, the coingestion of protein with CHO can assist glycogen storage. Future research should identify other factors that enhance the rate of synthesis of glycogen storage in a limited time frame, improve glycogen storage from a limited CHO intake, or increase muscle glycogen supercompensation.

Từ khóa


Tài liệu tham khảo

10.1152/ajpendo.1998.275.2.E229

Ahlborg B, 1967, Foersvarsmedicin, 85

10.1096/fasebj.9.12.7672505

10.1113/jphysiol.1996.sp021541

10.1113/jphysiol.1995.sp020553

10.1080/17461391.2014.920926

10.1249/MSS.0b013e31823a40ef

10.1123/ijsnem.20.6.515

10.1249/01.mss.0000222826.49358.f3

10.1111/j.1748-1716.1967.tb03720.x

10.1038/210309a0

10.3109/00365517209081080

10.2165/11536900-000000000-00000

10.1249/00005768-198708000-00013

10.1249/00005768-198710000-00012

10.1007/BF00236696

10.1016/S0026-0495(96)90213-9

10.2165/00007256-200737040-00018

10.1152/jappl.1995.78.6.2187

10.1152/japplphysiol.00115.2003

10.1093/ajcn/64.1.115

10.1152/jappl.1993.75.2.1019

10.1080/02640414.2011.585473

10.1080/0264041031000140527

10.1007/s00421-002-0621-5

10.1152/ajpendo.1989.256.4.E494

10.1017/S0007114511003862

10.1093/ajcn/34.9.1831

10.1152/jappl.1990.69.1.46

10.1080/02640419108729865

Danforth WJ, 1965, J Biol Chem, 240, 588, 10.1016/S0021-9258(17)45214-8

10.1152/japplphysiol.00977.2002

10.1152/ajpendo.00232.2016

10.1152/ajpendo.00376.2015

10.1249/MSS.0b013e3182814462

10.1111/j.1600-0838.2011.01418.x

10.1111/j.1600-0838.1999.tb00235.x

10.1152/japplphysiol.00949.2010

10.1042/bse0420001

10.1007/s40279-015-0400-1

10.1016/j.cmet.2015.06.016

10.2165/00007256-199724020-00001

10.1111/j.1748-1716.1967.tb03719.x

10.1152/ajpendo.1977.233.5.E422

10.1152/japplphysiol.90333.2008

10.1152/japplphysiol.00394.2002

10.1152/jappl.1988.64.4.1480

10.1152/jappl.1988.65.5.2018

10.1007/BF00430219

10.1113/jphysiol.2011.224972

10.1152/jappl.2001.91.2.839

10.2165/00007256-200333020-00004

10.1055/s-2007-972863

10.1152/jappl.1971.31.2.203

10.1055/s-2008-1025649

10.1249/01.mss.0000222845.89262.cd

10.1152/japplphysiol.00855.2015

10.1080/003655200750056600

10.1016/0014-5793(91)80154-U

10.1016/0014-5793(90)80959-M

10.1080/00365517809108819

10.1152/japplphysiol.00585.2001

10.1249/MSS.0000000000000823

10.1113/jphysiol.2011.217919

10.1016/j.cmet.2008.11.008

10.1249/01.MSS.0000155699.51360.2F

10.1152/jappl.1988.64.3.988

10.3389/fphys.2015.00245

10.1136/bjsports-2014-093502

10.2165/00007256-200030020-00002

10.1097/00005768-200107000-00005

10.1152/jappl.1991.70.4.1490

10.1046/j.1365-201X.2003.01165.x

10.1139/apnm-2012-0184

O’Brien MJ, 1993, Med Sci Sports Exerc, 25, 1009

10.1111/j.1748-1716.1970.tb04764.x

10.2337/diabetes.50.1.18

10.1097/00005768-199702000-00009

10.1152/japplphysiol.01121.2007

10.1152/jappl.1971.31.3.416

10.1152/ajpendo.00004.2012

10.1007/s004210050053

10.1074/jbc.M900845200

10.1152/jappl.1989.66.2.720

10.1111/j.1469-7793.2001.t01-2-00313.x

10.1172/JCI110517

10.1152/jappl.1989.66.2.876

10.1007/BF00691241

10.1007/s00726-016-2252-x

10.1152/jappl.1999.87.2.598

10.1152/ajpendo.2001.281.4.E766

10.1007/s00726-004-0143-z

10.1152/physiolgenomics.00157.2007

10.1152/japplphysiol.00787.2007

10.1152/japplphysiol.00275.2005

10.1152/ajpendo.00100.2005

10.1055/s-2008-1034594

10.1055/s-2008-1026056

10.1007/s00726-007-0580-6

10.1139/h11-157

10.1111/j.1432-1033.1991.tb16225.x

10.1097/00005768-200102000-00021

10.1152/jappl.1995.78.4.1360

10.1152/jappl.2001.91.1.225

10.1249/MSS.0000000000000852

10.1007/s00421-016-3333-y

10.1080/02640414.2014.970219

Tucker TJ, 2012, J Sports Med Phys Fitness, 52, 158

10.1152/jappl.2000.88.5.1631

10.1093/jn/130.10.2508

10.1093/ajcn/72.1.106

10.1093/ajcn/72.1.96

10.1152/jappl.1988.65.2.909

10.1152/jappl.1992.72.5.1999

10.1136/bjsm.18.4.244

10.1249/00005768-199101000-00008

10.1152/jappl.1992.72.5.1854