Possible experimental realization of a basic Z2 topological semimetal in GaGeTe

APL Materials - Tập 7 Số 12 - 2019
Erik Haubold1, Alexander Fedorov2,1, Florian Pielnhofer3,4, I. P. Rusinov5,6, Tatiana V. Menshchikova6, Viola Düppel4, Daniel Friedrich3, Richard Weihrich7, Arno Pfitzner3, Alexander Zeugner8,1, Anna Isaeva8,1, S. Thirupathaiah1, Yevhen Kushnirenko1, E. D. L. Rienks8,1, T. K. Kim9, Е. В. Чулков10,11,5,6, B. Büchner8,1, С. В. Борисенко1
1IFW Dresden 1 , Helmholtzstr. 20, 01069 Dresden, Germany
2HZB Helmholtz-Zentrum Berlin für Materialien und Energie 2 , Albert-Einstein-Str. 15, 12489 Berlin, Germany
3Institut für Anorganische Chemie, Universität Regensburg 4 , 93040 Regensburg, Germany
4Max Planck Institute for Solid State Research 3 , Heisenbergstr. 1, 70569 Stuttgart, Germany
5St. Petersburg State University 6 , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
6Tomsk State University 5 , pr. Lenina 36, 634050 Tomsk, Russia
7Universität Augsburg, Institut für Materials Ressource Management 7 , Universitätsstr. 2, 86135 Augsburg, Germany
8Faculty of Physics, TU Dresden 8 , 01062 Dresden, Germany
9Diamond Light Source, Harwell Campus 9 , Didcot OX11 0DE, United Kingdom
10Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, and Centro de Fisica de Materiales and Materials Physics Center, University of the Basque Country (UPV/EHU) 11 , 20080 San Sebastian/Donostia, Basque Country, Spain
11Donostia International Physics Center 10 , Paseo de Manuel Lardizabal 4, 20018 San Sebastian/Donostia, Basque Country, Spain

Tóm tắt

We report experimental and theoretical evidence that GaGeTe is a basic Z2 topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the classic 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-resolution angle-resolved photoemission spectroscopy combined with advanced band structure calculations show a small indirect energy gap caused by a peculiar band inversion at the T-point of the Brillouin zone in GaGeTe. An energy overlap of the valence and conduction bands brings both electron and holelike carriers to the Fermi level, while the momentum gap between the corresponding dispersions remains finite. We argue that peculiarities of the electronic spectrum of GaGeTe have a fundamental importance for the physics of topological matter and may boost the material’s application potential.

Từ khóa


Tài liệu tham khảo

2013, Topological insulator materials, J. Phys. Soc. Jpn., 82, 102001, 10.7566/JPSJ.82.102001

2015, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys., 6, 361, 10.1146/annurev-conmatphys-031214-014501

2018, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys., 90, 015001, 10.1103/revmodphys.90.015001

2010, Colloquium: Topological insulators, Rev. Mod. Phys., 82, 3045, 10.1103/revmodphys.82.3045

1977, C. R. Seances Acad. Sci., Ser. C, 284, 889

1983, GaGeTe, eine neue defekt-tetraederstruktur, Angew. Chem., 95, 420, 10.1002/ange.19830950516

1984, Raman spectrum and lattice dynamics of GaGeTe, Phys. Rev. B, 29, 5774, 10.1103/physrevb.29.5774

2012, Thermoelectric properties and nonstoichiometry of GaGeTe, AIP Conf. Proc., 1449, 267, 10.1063/1.4731548

2013, Optical and transport properties of GaGeTe single crystals, J. Cryst. Growth, 380, 72, 10.1016/j.jcrysgro.2013.05.036

2017, Designing 3D topological insulators by 2D-Xene (X = Ge, Sn) sheet functionalization in GaGeTe-type structures, J. Mater. Chem. C, 5, 4752, 10.1039/c7tc00390k

2017, Two-dimensional GaGeTe film: A promising graphene-like material with tunable band structure and high carrier mobility, J. Mater. Chem. C, 5, 8847, 10.1039/c7tc03001k

2014, Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 16, 095002, 10.1088/1367-2630/16/9/095002

2017, Ultrathin GaGeTe p-type transistors, Appl. Phys. Lett., 111, 203504, 10.1063/1.4998350

2011, Photoemission-induced gating of topological insulators, Phys. Rev. B, 83, 081303, 10.1103/physrevb.83.081303

2011, Wannier representation of z2 topological insulators, Phys. Rev. B, 83, 035108, 10.1103/physrevb.83.035108

2011, Equivalent expression of z2 topological invariant for band insulators using the non-Abelian Berry connection, Phys. Rev. B, 84, 075119, 10.1103/physrevb.84.075119

2013, Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment, Phys. Rev. B, 87, 121111, 10.1103/physrevb.87.121111

2014, Rashba effect in antimony and bismuth studied by spin-resolved ARPES, New J. Phys., 16, 055004, 10.1088/1367-2630/16/5/055004

2010, Surface- and edge-states in ultrathin Bi-Sb films, New J. Phys., 12, 065006, 10.1088/1367-2630/12/6/065006

2015, Dirac metal to topological metal transition at a structural phase change in Au2Pb and prediction of z2 topology for the superconductor, Phys. Rev. B, 91, 214517, 10.1103/physrevb.91.214517

2018, Bulk band inversion and surface Dirac cones in LaSb and LaBi: Prediction of a new topological heterostructure, Sci. Rep., 8, 14867, 10.1038/s41598-018-33273-6

2016, Charge compensation in extremely large magnetoresistance materials LaSb and LaBi revealed by first-principles calculations, Phys. Rev. B, 93, 235142, 10.1103/physrevb.93.235142

2017, Multiple Dirac cones at the surface of the topological metal LaBi, Nat. Commu., 8, 13942, 10.1038/ncomms13942

2017, Evidence of topological insulator state in the semimetal LaBi, Phys. Rev. B, 95, 115140, 10.1103/physrevb.95.115140

2018, Comparative study of the compensated semi-metals LaBi and LuBi: A first-principles approach, J. Phys.: Condens. Matter, 30, 205501, 10.1088/1361-648x/aabc3d

2013, Termination-dependent topological surface states of the natural superlattice phase Bi4Se3, Phys. Rev. B, 88, 081108, 10.1103/physrevb.88.081108

2016, Presence of exotic electronic surface states in LaBi and LaSb, Phys. Rev. B, 94, 165163, 10.1103/physrevb.94.165163

2010, Direct observation of spin-polarized surface states in the parent compound of a topological insulator using spin-and angle-resolved photoemission spectroscopy in a Mott-polarimetry mode, New J. Phys., 12, 125001, 10.1088/1367-2630/12/12/125001

2017, Three-dimensional band structure of LaSb and CeSb: Absence of band inversion, Phys. Rev. B, 96, 041120, 10.1103/physrevb.96.041120

2018, “Extremum loop” model for the valence-band spectrum of a HgTe/HgCdTe quantum well with an inverted band structure in the semimetallic phase, Semiconductors, 52, 1403, 10.1134/s106378261811009x

2016, Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe5, Phys. Rev. Lett., 116, 176803, 10.1103/physrevlett.116.176803

2015, Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe5, Phys. Rev. B, 92, 075107, 10.1103/physrevb.92.075107

2015, Magnetoinfrared spectroscopy of landau levels and Zeeman splitting of three-dimensional massless Dirac fermions in ZrTe5, Phys. Rev. Lett., 115, 176404, 10.1103/physrevlett.115.176404

2017, Transition between strong and weak topological insulator in ZrTe5 and HfTe5, Sci. Rep., 7, 45667, 10.1038/srep45667