Positive Autoregulation and Signaling Properties of Pyoluteorin, an Antibiotic Produced by the Biological Control Organism Pseudomonas fluorescens Pf-5

Applied and Environmental Microbiology - Tập 70 Số 3 - Trang 1758-1766 - 2004
Marion Brodhagen1, Marcella D. Henkels2, Joyce E. Loper1,2
1Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331
2Horticultural Crops Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon 97330

Tóm tắt

ABSTRACT

Pseudomonas fluorescens Pf-5, a rhizosphere bacterium, produces a suite of secondary metabolites that are toxic to seed- and root-rotting plant pathogens. Among these are the polyketide compounds pyoluteorin and 2,4-diacetylphloroglucinol. We provide evidence that pyoluteorin production is influenced by positive autoregulation. Addition of pyoluteorin to liquid cultures of Pf-5 enhanced pyoluteorin production. In addition, pyoluteorin and 2,4-diacetylphloroglucinol mutually inhibit one another's production in Pf-5. For pyoluteorin, both positive autoregulation and negative influences on production by 2,4-diacetylphloroglucinol were demonstrated at the transcriptional level by measuring activity from transcriptional fusions of an ice nucleation reporter gene ( inaZ ) to three separate pyoluteorin biosynthetic genes. The occurrence of pyoluteorin autoregulation in the rhizosphere was assessed on cucumber seedlings in pasteurized soil with cross-feeding experiments. In the rhizosphere, expression of a pyoluteorin biosynthesis gene by a pyoluteorin-deficient mutant of Pf-5 was enhanced by pyoluteorin produced by coinoculated cells of Pf-5. These data establish that the polyketide pyoluteorin is an autoregulatory compound and functions as a signal molecule influencing the spectrum of secondary metabolites produced by the bacterial cell.

Từ khóa


Tài liệu tham khảo

10.1128/JB.182.14.3913-3919.2000

10.1128/JB.184.11.3008-3016.2002

10.1021/jm00269a018

10.1128/JB.181.10.3155-3163.1999

10.1111/j.1574-6968.2000.tb09136.x

10.1073/pnas.96.24.14073

Brodhagen M. 2003. Ph.D. thesis. Oregon State University Corvallis.

10.1073/pnas.92.10.4197

Corbell N. 1999. Ph.D. thesis. Oregon State University Corvallis.

10.1128/jb.177.21.6230-6236.1995

Cuppels, D. A., C. R. Howell, R. D. Stipanovic, A. Stoessl, and J. B. Stothers. 1986. Biosynthesis of pyoluteorin: a mixed polyketide-tricarboxylic acid cycle origin demonstrated by [1, 2-13C2]acetate incorporation. Z. Naturforsch.41c:532-536.

10.1016/0167-7799(94)90091-4

10.1021/bi00512a013

10.1111/j.1365-2958.1996.tb02495.x

10.1073/pnas.252607699

10.1128/jb.170.1.380-385.1988

10.1016/S0958-1669(00)00098-7

10.1146/annurev.phyto.41.052002.095656

10.7164/antibiotics.35.349

10.1128/jb.184.4.1046-1056.2002

10.1094/MPMI.2001.14.12.1351

Horinouchi, S. 1999. γ-Butyrolactones that control secondary metabolism and cell differentiation in Streptomyces, p. 193-207. In G. M. Dunny and S. C. Winans (ed.), Cell-cell signaling in bacteria. ASM Press, Washington, D.C.

10.1094/Phyto-69-480

10.1094/Phyto-70-712

10.1094/MPMI-4-393

10.1094/MPMI-5-004

Khokhlov, A. S. 1988. Results and perspectives of actinomycete autoregulators studies, p. 338-345. In Y. Okami, T. Beppu, and H. Ogawara (ed.), Biology of actinomycetes '88. Japan Scientific Societies Press, Tokyo, Japan.

King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med.44:301-307.

10.1094/Phyto-82-264

10.1128/aem.61.3.849-854.1995

10.1073/pnas.092016999

10.1002/j.1460-2075.1989.tb03508.x

10.1128/AEM.65.12.5357-5363.1999

10.1128/aem.60.6.1934-1941.1994

Loper, J. E., and S. E. Lindow. 2002. Reporter gene systems useful in evaluating in situ gene expression by soil and plant-associated bacteria, p. 627-637. In C. J. Hurst, R. L. Crawford, G. R. Knudsen, J. J. McInerney, and L. D. Stetzenbach (ed.), Manual of environmental microbiology, 2nd ed. ASM Press, Washington, D.C.

Proceedings of the Fourth International Workshop on Plant Growth Promoting Rhizobacteria 1997

10.1094/Phyto-82-190

10.1128/JB.182.10.2702-2708.2000

Cell-cell signaling in bacteria 1999

10.1128/AEM.68.5.2229-2235.2002

Nowak-Thompson B. 1997. Ph.D. thesis. Oregon State University Corvallis.

10.1128/JB.181.7.2166-2174.1999

10.1139/m94-168

10.1016/S0378-1119(97)00501-5

10.1016/S0021-9258(18)99839-X

10.1073/pnas.96.20.11229

10.1094/Phyto-83-1223

10.1094/MPMI.1998.11.11.1078

10.1099/00221287-144-11-3135

10.1073/pnas.92.26.12255

10.1146/annurev.mi.47.100193.003121

10.1128/jb.177.18.5387-5392.1995

10.1128/aem.61.11.3856-3864.1995

10.1128/JB.182.5.1215-1225.2000

Smith, J. T., and H.-J. Zeiler. 1998. History and introduction, p. 1-11. In J. Kuhlmann, A. Dalhoff, and H.-J. Zeiler (ed.), Quinolone antibacterials. Springer, Berlin, Germany.

10.1101/gad.10.16.2014

Warren, G. J. 1995. Identification and analysis of ina genes and proteins, p. 85-99. In R. E. Lee, Jr., G. J. Warren, and L. V. Gusta (ed.), Biological ice nucleation and its applications. APS Press, St. Paul, Minn.

10.1111/j.1365-2958.1990.tb02036.x

10.1128/JB.180.24.6635-6641.1998

10.1128/AEM.66.7.2718-2725.2000

10.1128/jb.179.24.7663-7670.1997