Positioning error evaluation of GPU-based 3D ultrasound surgical navigation system for moving targets by using optical tracking system

Springer Science and Business Media LLC - Tập 8 - Trang 379-393 - 2012
Ikuma Sato1, Ryoichi Nakamura2
1Department of Media Architecture, Faculty of System Information Science Engineering, Future University Hakodate, Hakodate, Hokkaido, Japan
2Department of Medical System Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan

Tóm tắt

A near real-time three-dimensional (3D) ultrasound navigation system has been developed for guiding surgery involving internal organs that move and change shape (e.g., abdominal surgery, fetal surgery). In practical applications, significant errors arise between the actual navigation-image positions depending on the time delay of the system. Therefore, the positioning error of the system relative to the target velocity was evaluated. We developed a method for evaluating the positioning error of a graphics processing unit-based 3D ultrasound surgical navigation system (with an optical tracking system) for moving targets. The effectiveness of this system was quantitatively evaluated in terms of its image processing runtime, target registration error (TRE), and positioning error for a moving target. The positioning error was evaluated for a phantom (with an optical tracking marker) moving at speeds of 5–25 mm/s, and the navigation target was the center point of the phantom. The imaging range of the volume data was set to the maximum angle and range of the ultrasound diagnostic system (update rate: 4 Hz). The image processing runtime was 27.43 ± 4.80 ms, and the TRE was 1.50 ± 0.28 mm. The positioning error was 4.24 ± 0.12 mm for a target moving at a speed of 10 mm/s and 5.36 ± 0.10 mm for one moving at 15 mm/s. The effectiveness of an ultrasound navigation system was quantitatively evaluated by using the positioning error for a moving target. This navigation system demonstrated high calculation speed and positioning accuracy for a moving target. Therefore, it is suitable to guide the surgery of abdominal internal organs (e.g., in fetal and abdominal surgeries) that move or change shape during breathing and surgical approaches.

Tài liệu tham khảo

Sakuma I, Tanaka Y, Takai Y, Kobayashi E, Dohi T, Schorr O, Hata N, Iseki H, Muragaki Y, Hori T, Takakura K (2001) Three-dimensional digital ultrasound imaging system for surgical navigation. Int Congr Ser 1230(0): 117–122. doi:10.1016/s0531-5131(01)00027-9 Sjolie E, Lango T, Ystgaard B, Tangen GA, Nagelhus Hernes TA, Marvik R (2003) 3D ultrasound-based navigation for radiofrequency thermal ablation in the treatment of liver malignancies. Surg Endosc 17(6): 933–938. doi:10.1007/s00464-002-9116-z Blackall JM, Penney GP, King AP, Hawkes DJ (2005) Alignment of sparse freehand 3-D ultrasound with preoperative images of the liver using models of respiratory motion and deformation. IEEE Trans Med Imaging 24(11): 1405–1416. doi:10.1109/TMI.2005.856751 Beller S, Hunerbein M, Eulenstein S, Lange T, Schlag PM (2007) Feasibility of navigated resection of liver tumors using multiplanar visualization of intraoperative 3-dimensional ultrasound data. Ann Surg 246(2): 288–294. doi:10.1097/01.sla.0000264233.48306.99 Nakamoto M, Hirayama H, Sato Y, Konishi K, Kakeji Y, Hashizume M, Tamura S (2007) Recovery of respiratory motion and deformation of the liver using laparoscopic freehand 3D ultrasound system. Med Image Anal 11(5): 429–442. doi:10.1016/j.media.2007.07.009 Konishi K, Nakamoto M, Kakeji Y, Tanoue K, Kawanaka H, Yamaguchi S, Ieiri S, Sato Y, Maehara Y, Tamura S, Hashizume M (2007) A real-time navigation system for laparoscopic surgery based on three-dimensional ultrasound using magneto-optic hybrid tracking configuration. Int J Comput Assis Radiol Surg 2(1): 1–10. doi:10.1007/s11548-007-0078-4 Nakamura R, Kitazumi G, Nagamura S, Tanabe R, Sudo M, Katsuike Y, Mochizuki T, Chiba T (2011) Surgical navigation system using Intraoperative real-time 3D ultrasound imaging for fetal surgery. J Japan Soc Comput Aided Surg 13(2):87–95, 2011. [In Japanese] Igarashi T, Naya Y, Shimomura Y, Yamaguchi T, Makino H (2009) Water filled endoscopic surgery (WAFLES): first experience in animal model. Soc Am Gastrointest Endosc Surg (SAGES) 2009: 195 Igarashi T, Shimomura Y, Yamaguchi T, Kawahira H, Makino H, Yu WW, Naya Y (2011) Water-Filled Laparoendoscopic Surgery (WAFLES): Feasibility Study in Porcine Model. J Laparoendosc Adv Surg Tech Part A. doi:10.1089/lap.2011.0404 Liao H, Tsuzuki M, Mochizuki T, Kobayashi E, Chiba T, Sakuma I (2009) Fast image mapping of endoscopic image mosaics with three-dimensional ultrasound image for intrauterine fetal surgery. Minimally Invasive Therapy & Allied Technologies: MITAT: Official Journal of the Society for Minimally Invasive Therapy 18(6):332–340. doi:10.3109/13645700903201217 Lim S, Kwon K, Shin B-S (2009) GPU-based interactive visualization framework for ultrasound datasets. Comput Animat Virtual Worlds 20(1): 11–23. doi:10.1002/cav.v20:1 Kutter O, Shams R, Navab N (2009) Visualization and GPU-accelerated simulation of medical ultrasound from CT images. Comput Methods Prog Biomed 94(3): 250–266. doi:10.1016/j.cmpb.2008.12.011 So HKH, Junying C, Yiu BYS, Yu ACH (2011) Medical ultrasound imaging: to GPU or not to GPU. IEEE Micro 31(5): 54–65 Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE Trans Pattern Anal Mach Intell 9(5): 698–700 Maurer CR Jr, Fitzpatrick JM, Wang MY, Galloway RL Jr, Maciunas RJ, Allen GS (1997) Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16(4): 447–462 Davies SC, Hill AL, Holmes RB, Halliwell M, Jackson PC (1994) Ultrasound quantitation of respiratory organ motion in the upper abdomen. Br J Radiol 67(803): 1096–1102. doi:10.1259/0007-1285-67-803-1096 Brandner ED, Wu A, Chen H, Heron D, Kalnicki S, Komanduri K, Gerszten K, Burton S, Ahmed I, Shou Z (2006) Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol Phys 65(2): 554–560. doi:10.1016/j.ijrobp.2005.12.042