Portevin–Le Chatelier effect: modeling the deformation bands and stress-strain curves

Tero Mäkinen1, Markus Ovaska1, Lasse Laurson2, Mikko J. Alava1
1Department of Applied Physics, Aalto University, P.O. Box 11100, Espoo, 00076 Aalto, Finland
2Computational Physics Laboratory, Tampere University, P.O. Box 692, Tampere FI-33014, Finland

Tóm tắt

AbstractIn the Portevin–Le Chatelier (PLC) effect sample plastic deformation takes place via localized bands. We present a model to account for band dynamics and the variability the bands exhibit. The approach is tuned to account for strain hardening and the strain-rate dependence for the case of so-called type A (propagating) bands. The main experimental features of the fluctuations are a reduction with strain and increase with the strain rate which is reproduced by a model of plastic deformation with Dynamic Strain Aging, including disorder as a key parameter. Extensions are discussed as are the short-comings in reproducing detailed avalanche statistics.

Từ khóa


Tài liệu tham khảo

H. Ait-Amokhtar, P. Vacher, S. Boudrahem, Kinematics fields and spatial activity of Portevin-Le Chatelier bands using the digital image correlation method. Acta Mater.54(16), 4365–4371 (2006). https://doi.org/10.1016/j.actamat.2006.05.028.

M. J. Alava, L. Laurson, S. Zapperi, Crackling noise in plasticity. Eur. Phys. J. Spec. Top.223(11), 2353–2367 (2014). https://doi.org/10.1140/epjst/e2014-02269-8.

B. Alessandro, C. Beatrice, G. Bertotti, A. Montorsi, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I. Theory. J. Appl. Phys.68(6), 2901–2907 (1990).

G. Ananthakrishna, Current theoretical approaches to collective behavior of dislocations. Phys. Rep.440(4-6), 113–259 (2007).

A. Benallal, T. Berstad, T. Børvik, O. S. Hopperstad, I. Koutiri, R. Nogueira de Codes, An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin-Le Chatelier effect. Int. J. Plas.24(10), 1916–1945 (2008a). https://doi.org/10.1016/j.ijplas.2008.03.008.

A. Benallal, T. Berstad, T. Børvik, O. S. Hopperstad, R. Nogueira De Codes, Effects of strain rate on the characteristics of PLC deformation bands for AA5083-H116 aluminium alloy. Philosoph. Mag.88(28-29), 3311–3338 (2008b). https://doi.org/10.1080/14786430802468223.

M. S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, L. P. Kubin, Multifractal burst in the spatiotemporal dynamics of jerky flow. Phys. Rev. Lett.87(16), 165508 (2001).

M. S. Bharathi, S. Rajesh, G. Ananthakrishna, A dynamical model for the Portevin–Le Chatelier bands. Scripta Mater.48(9), 1355–1360 (2003). https://doi.org/10.1016/S1359-6462(02)00653-X.

Y. Cai, S. Yang, S. Fu, D. Zhang, Q. Zhang, Investigation of Portevin–Le Chatelier band strain and elastic shrinkage in Al-based alloys associated with Mg contents. J. Mater. Sci. Technol.33(6), 580–586 (2017).

L. Casarotto, H. Dierke, R. Tutsch, H. Neuhäuser, On nucleation and propagation of PLC bands in an Al-3Mg alloy. Mater. Sci. Eng. A. 527(1-2), 132–140 (2009). https://doi.org/10.1016/j.msea.2009.07.043.

A. Chatterjee, A. Sarkar, S. Bhattacharya, P. Mukherjee, N. Gayathri, P. Barat, Markov property of continuous dislocation band propagation. Phys. Lett. A. 372(22), 4016–4020 (2008). https://doi.org/10.1016/j.physleta.2008.03.013.

L. Chen, H. -S. Kim, S. -K. Kim, B. C. De Cooman, Localized Deformation due to Portevin–LeChatelier Effect in 18Mn–0.6C TWIP Austenitic Steel. ISIJ Int.47(12), 1804–1812 (2007). https://doi.org/10.2355/isijinternational.47.1804.

K. Chihab, C. Fressengeas, Time distribution of stress drops, critical strain and crossover in the dynamics of jerky flow. Mater. Sci. Eng. A. 356(1-2), 102–107 (2003). https://doi.org/10.1016/S0921-5093(03)00141-2.

F. Chmelík, F. B. Klose, H. Dierke, J. Šachl, H. Neuhäuser, P. Lukáč, Investigating the Portevin-Le Châtelier effect in strain rate and stress rate controlled tests by the acoustic emission and laser extensometry techniques. Mater. Sci. Eng. A. 462(1-2), 53–60 (2007). https://doi.org/10.1016/j.msea.2006.01.169.

F. Chmelík, A. Ziegenbein, H. Neuhäuser, P. Lukáč, Investigating the Portevin–Le Châtelier effect by the acoustic emission and laser extensometry techniques. Mater. Sci. Eng. A. 324(1-2), 200–207 (2002). https://doi.org/10.1016/S0921-5093(01)01312-0.

A. H. Cottrell, B. A. Bilby, Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. A. 62(1), 49–62 (1949).

M. Dablij, A. Zeghloul, Portevin-Le Chatelier plastic instabilities: Characteristics of deformation bands. Mater. Sci. Eng. A. 237(1), 1–5 (1997). https://doi.org/10.1016/S0921-5093(97)00101-9.

S. Dahdouh, M. Mehenni, H. Ait-Amokhtar, Kinetics of formation and propagation of type A Portevin-Le Chatelier bands in the presence of a small circular hole. J. Alloys Compd.885:, 160982 (2021).

J. R. Dormand, P. J. Prince, A reconsideration of some embedded Runge–Kutta formulae. J. Comp. Appl. Math.15(2), 203–211 (1986). https://doi.org/10.1016/0377-0427(86)90027-0.

P. Hähner, A. Ziegenbein, H. Neuhäuser, Observation and modelling of propagating Portevin-Le Châtelier deformation bands in Cu-15at.% Al polycrystals. Philosoph. Mag. A. 81(6), 1633–1649 (2001). https://doi.org/10.1080/01418610108214367.

P. Hähner, A. Ziegenbein, E. Rizzi, H. Neuhäuser, Spatiotemporal analysis of Portevin-Le Châtelier deformation bands: Theory, simulation, and experiment. Phys. Rev. B. 65(13), 134109 (2002). https://doi.org/10.1103/PhysRevB.65.134109.

H. Halim, D. S. Wilkinson, M. Niewczas, The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater.55(12), 4151–4160 (2007). https://doi.org/10.1016/j.actamat.2007.03.007.

H. Jiang, Q. Zhang, X. Chen, Z. Chen, Z. Jiang, X. Wu, J. Fan, Three types of Portevin-Le Chatelier effects: Experiment and modelling. Acta Mater.55(7), 2219–2228 (2007). https://doi.org/10.1016/j.actamat.2006.10.029.

H. F. Jiang, Q. C. Zhang, Z. Y. Jiang, Z. J. Chen, X. P. Wu, Investigation of kinematics of the Portevin-Le Chatelier deformation bands with dynamic digital speckle pattern interferometry. Chin. Phys. Lett.22(1), 99–102 (2005). https://doi.org/10.1088/0256-307X/22/1/028.

H. Jiang, Q. Zhang, Z. Jiang, X. Wu, Experimental investigations on kinetics of Portevin-Le Chatelier effect in Al-4 wt.%Cu alloys. J. Alloys Compd.428(1-2), 151–156 (2007). https://doi.org/10.1016/j.jallcom.2006.03.062.

J. Kang, R. K. Mishra, D. S. Wilkinson, O. S. Hopperstad, Effect of Mg content on Portevin–Le Chatelier band strain in Al-Mg sheet alloys. Philos. Mag. Lett.92(11), 647–655 (2012).

F. B. Klose, F. Hagemann, P. Hähner, H. Neuhäuser, Investigation of the Portevin-LeChâtelier effect in Al-3wt.%Mg alloys by strain-rate and stress-rate controlled tensile tests. Mater. Sci. Eng. A. 387-389(1-2 SPEC. ISS), 93–97 (2004). https://doi.org/10.1016/j.msea.2004.01.062.

B. Klusemann, G. Fischer, T. Böhlke, B. Svendsen, Thermomechanical characterization of Portevin-Le Châtelier bands in AlMg3 (AA5754) and modeling based on a modified Estrin–McCormick approach. Int. J. Plas.67:, 192–216 (2015). https://doi.org/10.1016/j.ijplas.2014.10.011.

S. Kok, M. Bharathi, A. Beaudoin, C. Fressengeas, G. Ananthakrishna, L. Kubin, M. Lebyodkin, Spatial coupling in jerky flow using polycrystal plasticity. Acta Mater.51(13), 3651–3662 (2003).

L. Kubin, Y. Estrin, Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect. Acta Metall. Mater.38(5), 697–708 (1990).

J. Kumar, R. Sarmah, G. Ananthakrishna, General framework for acoustic emission during plastic deformation. Phys. Rev. B. 92(14), 144109 (2015). https://doi.org/10.1103/PhysRevB.92.144109.

G. Lasko, P. Hähner, S. Schmauder, Finite element simulation of the Portevin-Le Chatelier effect. Modell. Simul. Mater. Sci. Eng.13(5), 645–656 (2005). https://doi.org/10.1088/0965-0393/13/5/001.

A. Le Chatelier, Influence du temps et de la température sur les essais au choc. Rev. Métall.6(8), 914–917 (1909).

T. A. Lebedkina, M. A. Lebyodkin, J. P. Chateau, A. Jacques, S. Allain, On the mechanism of unstable plastic flow in an austenitic FeMnC TWIP steel. Mater. Sci. Eng. A. 519(1-2), 147–154 (2009). https://doi.org/10.1016/j.msea.2009.04.067.

M. A. Lebyodkin, Y. Brechet, Y. Estrin, L. P. Kubin, Statistics of the Slip Events in the Portevin-Le Chatelier Effect. Phys. Rev. Lett.74(23), 4758–4761 (1995).

M. Lebyodkin, Y. Brechet, Y. Estrin, L. Kubin, Statistical behaviour and strain localization patterns in the Portevin-Le Chatelier effect. Acta Mater.44(11), 4531–4541 (1996). https://doi.org/10.1016/1359-6454(96)00076-6.

M. A. Lebyodkin, Y. Estrin, Multifractal analysis of the Portevin–Le Chatelier effect: General approach and application to AlMg and AlMg/Al2O3 alloys. Acta Mater.53(12), 3403–3413 (2005).

M. A. Lebyodkin, T. A. Lebedkina, The Portevin-Le Chatelier effect and beyond. arXiv preprint arXiv:2104.07018 (2021). https://doi.org/10.48550/arXiv.2104.07018.

M. A. Lebyodkin, I. V. Shashkov, T. A. Lebedkina, K. Mathis, P. Dobron, F. Chmelik, Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation. Phys. Rev. E. 88(4), 042402 (2013). https://doi.org/10.1103/PhysRevE.88.042402.

H. Louche, K. Bouabdallah, P. Vacher, T. Coudert, P. Balland, Kinematic fields and acoustic emission observations associated with the Portevin Le Châtelier effect on an Al-Mg alloy. Exp. Mech.48(6), 741–751 (2008). https://doi.org/10.1007/s11340-008-9125-5.

T. Mäkinen, P. Karppinen, M. Ovaska, L. Laurson, M. J. Alava, Propagating bands of plastic deformation in a metal alloy as critical avalanches. Sci. Adv.6(41), 7350 (2020).

P. G. McCormick, A model for the Portevin-Le Chatelier effect in substitutional alloys. Acta. Metall.20(3), 351–354 (1972). https://doi.org/10.1016/0001-6160(72)90028-4.

S. Papanikolaou, Y. Cui, N. Ghoniem, Avalanches and plastic flow in crystal plasticity: An overview. Modell. Simul. Mater. Sci. Eng.26(1), 013001 (2018).

A. Portevin, F. Le Chatelier, Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation. C. R. Acad. Sci.176:, 507–510 (1923).

S. Rajesh, G. Ananthakrishna, Relaxation oscillations and negative strain rate sensitivity in the Portevin–Le Chatelier effect. Phys. Rev. E. 61(4), 3664–3674 (2000).

N. Ranc, D. Wagner, Experimental study by pyrometry of Portevin-Le Châtelier plastic instabilities–Type A to type B transition. Mater. Sci. Eng. A. 474(1-2), 188–196 (2008). https://doi.org/10.1016/j.msea.2007.04.012.

S. Ren, M. Mazière, S. Forest, T. F. Morgeneyer, G. Rousselier, A constitutive model accounting for strain ageing effects on work-hardening. Application to a C–Mn steel. C. R. Mecanique. 345(12), 908–921 (2017).

S. Ren, T. Morgeneyer, M. Mazière, S. Forest, G. Rousselier, Effect of Lüders and Portevin–Le Chatelier localization bands on plasticity and fracture of notched steel specimens studied by DIC and FE simulations. Int. J. Plast.136:, 102880 (2021).

R. Shabadi, S. Kumar, H. J. Roven, E. S. Dwarakadasa, Characterisation of PLC band parameters using laser speckle technique. Mater. Sci. Eng. A. 364(1-2), 140–150 (2004). https://doi.org/10.1016/j.msea.2003.08.013.

R. Shabadi, S. Kumar, H. J. Roven, E. S. Dwarakadasa, Effect of specimen condition, orientation and alloy composition on PLC band parameters. Mater. Sci. Eng. A. 382(1-2), 203–208 (2004). https://doi.org/10.1016/j.msea.2004.04.079.

I. V. Shashkov, M. A. Lebyodkin, T. A. Lebedkina, Multiscale study of acoustic emission during smooth and jerky flow in an AlMg alloy. Acta Mater.60(19), 6842–6850 (2012). https://doi.org/10.1016/j.actamat.2012.08.058.

W. Tong, H. Tao, N. Zhang, L. G. Hector, Time-resolved strain mapping measurements of individual Portevin-Le Chatelier deformation bands. Scr. Mater.53(1), 87–92 (2005). https://doi.org/10.1016/j.scriptamat.2005.03.020.

A. Van den Beukel, Theory of the effect of dynamic strain aging on mechanical properties. Phys. Status Solidi A. 30(1), 197–206 (1975).

E. Voce, The relationship between stress and strain for homogeneous deformation. J. Inst. Met.74:, 537–562 (1948).

B. A. Wilcox, A. R. Rosenfield, On Serrated Yielding and Negative Strain-Rate Sensitivity. Mater. Sci. Eng.1(1), 201–205 (1966).

J. Xu, B. Holmedal, O. S. Hopperstad, T. Maník, K. Marthinsen, Dynamic strain ageing in an AlMg alloy at different strain rates and temperatures: experiments and constitutive modelling. Int. J. Plast.151:, 103215 (2022).

M. Zaiser, Scale invariance in plastic flow of crystalline solids. Adv. Phys.55(1-2), 185–245 (2006). https://doi.org/10.1080/00018730600583514.

M. Zaiser, P. Hähner, Oscillatory modes of plastic deformation: theoretical concepts. Phys. Status Solidi B. 199(2), 267–330 (1997).

S. Zhang, P. G. McCormick, Y. Estrin, The morphology of Portevin-Le Chatelier bands: Finite element simulation for Al-Mg-Si. Acta Mater.49(6), 1087–1094 (2001). https://doi.org/10.1016/S1359-6454(00)00380-3.

Y. Zhao, L. Dezerald, M. Pozuelo, X. Zhou, J. Marian, Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales. Nat. Commun.11(1), 1–8 (2020).

A. Ziegenbein, P. Hähner, H. Neuhäuser, Correlation of temporal instabilities and spatial localization during Portevin-Le Chatelier deformation of Cu-10 at.% Al and Cu-15 at.% Al. Comp. Mater. Sci.19(1-4), 27–34 (2000). https://doi.org/10.1016/S0927-0256(00)00136-1.