Porphyrin‐related photosensitizers for cancer imaging and therapeutic applications

Journal of Microscopy - Tập 218 Số 2 - Trang 133-147 - 2005
Kristian Berg1, Pål Kristian Selbo1, Anette Weyergang1, Andreas Dietze1, Lina Prasmickaite1, Anette Bonsted1, Birgit Engesæter1, Even Angell‐Petersen2, Trond Warloe2, Niels Frandsen3, Anders Høgset4
1Department of Radiation Biology, and
2Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo, Norway
3Santaris Pharma A/S, Bøge Allé 3, DK-2970 Hørsholm, Denmark
4PCI Biotech AS, Hoffsveien 48, N-0377, Oslo, Norway

Tóm tắt

SummaryA photosensitizer is defined as a chemical entity, which upon absorption of light induces a chemical or physical alteration of another chemical entity. Some photosensitizers are utilized therapeutically such as in photodynamic therapy (PDT) and for diagnosis of cancer (fluorescence diagnosis, FD). PDT is approved for several cancer indications and FD has recently been approved for diagnosis of bladder cancer. The photosensitizers used are in most cases based on the porphyrin structure. These photosensitizers generally accumulate in cancer tissues to a higher extent than in the surrounding tissues and their fluorescing properties may be utilized for cancer detection. The photosensitizers may be chemically synthesized or induced endogenously by an intermediate in heme synthesis, 5‐aminolevulinic acid (5‐ALA) or 5‐ALA esters. The therapeutic effect is based on the formation of reactive oxygen species (ROS) upon activation of the photosensitizer by light. Singlet oxygen is assumed to be the most important ROS for the therapeutic outcome. The fluorescing properties of the photosenisitizers can be used to evaluate their intracellular localization and treatment effects. Some photosensitizers localize intracellularly in endocytic vesicles and upon light exposure induce a release of the contents of these vesicles, including externally added macromolecules, into the cytosol. This is the basis for a novel method for macromolecule activation, named photochemical internalization (PCI). PCI has been shown to potentiate the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome‐inactivating proteins, immunotoxins, gene‐encoding plasmids, adenovirus, peptide‐nucleic acids and the chemotherapeutic drug bleomycin. The background and present status of PDT, FD and PCI are reviewed.

Từ khóa


Tài liệu tham khảo

10.1111/j.1751-1097.1999.tb08246.x

10.1016/S1568-461X(01)80112-5

10.1111/j.1751-1097.1991.tb03924.x

10.1002/ijc.2910590618

Berg K., 1999, Photochemical internalization: a novel technology for delivery of macromolecules into cytosol, Cancer Res, 59, 1180

10.1111/j.1751-1097.1990.tb01789.x

10.1076/soph.16.4.181.10299

10.1002/lsm.20088

10.1038/sj.gt.3302166

Bonsted A., 2005, Photochemical enhancement of glue delivery to glioblastoma cells is dependent on the vector applied, Anticancer Res

10.1016/S1043-6618(02)00312-2

10.1007/s101030200027

10.1016/S1470-2045(04)01529-3

Brustad T., 1997, Vital Microscopy and its use to elucidate photodynamic effects, Internet Photochem. Photobiol, 3

10.1097/00001813-199408000-00009

10.1021/ja047392k

10.1211/002235703765951311

10.1111/j.1442-2050.2004.00409.x

10.1039/b207387k

10.1111/j.1749-6632.1999.tb09409.x

10.1177/039463200401700304

Derendorf H., 1995, Handbook of Pharmacokinetics/Pharmacodynamic Correlation

10.1562/0031-8655(2003)0780283PIETCE2.0.CO2

10.1089/oli.1.1997.7.309

10.1038/nrc1071

10.1016/j.addr.2003.09.003

10.1093/jnci/55.1.115

10.1093/jnci/91.18.1557

10.1054/bjoc.2001.2124

10.1038/sj.cgt.7700808

10.1016/S1011-1344(02)00413-X

10.2174/1566523043346372

10.1038/jid.1959.40

Folini M., 2003, Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase, Cancer Res, 63, 3490

10.1111/j.1751-1097.1998.tb02492.x

Gollnick S.O., 2002, Generation of effective antitumor vaccines using photodynamic therapy, Cancer Res, 62, 1604

10.1039/b211880g

Henderson B.W., 1989, Tissue localization of photosensitizers and the mechanism of photodynamic tissue destruction, Ciba Found. Symp, 146, 112

10.1038/sj.cgt.7700447

10.1016/j.addr.2003.08.016

10.1089/10430340050015482

10.1667/RR3186

10.1097/00042307-200409000-00004

10.1016/0304-3835(86)90023-6

10.1080/10611860410001723090

10.1111/j.1365-2133.2004.05940.x

10.1016/j.addr.2003.09.002

10.1002/jpp.328

10.1039/b407622b

10.1177/153303460400300507

10.1067/mge.2001.118642

10.1111/j.1751-1097.1991.tb03669.x

Moan J., 2003, An outline of the hundred‐year history of PDT, Anticancer Res, 23, 3591

10.1038/bjc.1979.72

Ndoye A., 2004, Sustained gene transfer and enhanced cell death following glucosylated‐PEI‐mediated p53 gene transfer with photochemical internalisation in p53‐mutated head and neck carcinoma cells, Int. J. Oncol, 25, 1575

10.1002/jgm.573

10.1562/0031-8655(2002)0750382DNILDO2.0.CO2

Niedre M.J., 2003, In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy, Cancer Res, 63, 7986

10.1111/j.1751-1097.1997.tb08549.x

10.1016/0304-3835(91)90020-I

10.1016/S1011-1344(01)00173-7

10.1002/(SICI)1097-0142(19970615)79:12<2282::AID-CNCR2>3.0.CO;2-O

10.1562/0031-8655(2001)0730388EODPFU2.0.CO2

10.1038/sj.cgt.7700720

10.1002/1521-2254(200011/12)2:6<477::AID-JGM137>3.0.CO;2-B

Raab O., 1900, Ueber die wirkung fluorescierenden stoffe auf infusorien nach versuchen von O.Raab, Z. Biol, 39, 524

10.1097/01.ju.0000100480.70769.0e

10.1038/sj.onc.1202489

10.1562/0031-8655(2001)0740303AABPIO2.0.CO2

10.1016/S0304-4165(00)00082-9

10.1002/1097-0215(20000915)87:6<853::AID-IJC15>3.0.CO;2-0

10.1002/1097-0215(20010601)92:5<761::AID-IJC1238>3.0.CO;2-4

10.1136/pgmj.2003.017764

10.1016/S1359-6446(99)01412-9

Shiah J.G., 2000, Antitumor activity of N‐(2‐hydroxypropyl) methacrylamide copolymer‐Mesochlorine e6 and adriamycin conjugates in combination treatments, Clin. Cancer Res, 6, 1008

10.1111/j.1751-1097.1987.tb04823.x

Stefanidou M., 2000, In vivo fluorescence kinetics and photodynamic therapy efficacy of delta‐aminolevulinic acid‐induced porphyrins in basal cell carcinomas and actinic keratoses; implications for optimization of photodynamic therapy, Eur. J. Dermatol, 10, 351

Stummer W., 2003, Fluorescence‐guided resections of malignant gliomas – an overview, Acta Neurochir. Suppl, 88, 9

10.1038/418252a

Von Tappeiner H., 1903, Terapeutiche Versuche mit fluorescierenden Stoffen, Munch. Med. Worchenschr, 47, 2042

10.1111/j.1751-1097.2005.tb01528.x

10.1007/s00262-003-0482-8

10.1002/lsm.10131

10.1562/0031-8655(2001)0740611MMPDOM2.0.CO2