Phân bố kích thước lỗ rỗng, hình học và khả năng kết nối trong bể chứa sa thạch Paleogen Es1 bị chôn vùi sâu, Nanpu Sag, Đông Trung Quốc

Elsevier BV - Tập 16 Số 5 - Trang 981-1000 - 2019
Muhammad Kashif1, Yingchang Cao1, Guanghui Yuan1, Muhammad Asif2, Kamran Javed1, José N. Méndez1, Danish Khan1, Mian Lin1
1School of Geosciences, China University of Petroleum, Qingdao 266580, China
2Institute of Geology, University of the Punjab, Lahore, Pakistan

Tóm tắt

Tóm tắt

Nghiên cứu các đặc điểm của lỗ rỗng rất quan trọng trong việc đánh giá bể chứa, đặc biệt là trong các sa thạch bị chôn vùi sâu. Nó kiểm soát cơ chế lưu trữ và các thuộc tính của chất lỏng trong bể chứa của các tầng có khả năng thẩm thấu. Thành viên đầu tiên của tầng đá Shahejie từ kỷ Eocen (Es1) được phân loại là đá feldspathic litharenite và lithic arkose. Nghiên cứu hiện tại điều tra các đặc điểm của lỗ rỗng và các đặc tính bể chứa của bể chứa sa thạch bị chôn vùi sâu của thành viên Es1 thuộc tầng đá Shahejie. Các kỹ thuật bao gồm địa chất học mỏng, áp suất mao dẫn tiêm thủy ngân (MICP), kính hiển vi điện tử quét và ảnh kính hiển vi huỳnh quang quét laser đã được sử dụng để phân định các lỗ rỗng bao gồm lỗ rỗng liên kết chính và lỗ rỗng liên kết phụ, lỗ rỗng bên trong, lỗ rỗng hòa tan và lỗ rỗng nứt. Thử nghiệm tiêm thủy ngân và phân tích lõi thông thường đã dẫn đến việc phân định các đặc điểm mạng lỗ rỗng của bể chứa đã nghiên cứu. Kích thước lỗ rỗng và phân bố kích thước cổ họng lỗ rỗng được thu thập từ thử nghiệm tiêm thủy ngân. Giá trị độ rỗng dao động từ 0.5% đến 30%, và độ thẩm thấu dao động từ 0.006 – 7000 mD. Bán kính lỗ rỗng của sa thạch hạt thô và sa thạch hạt mịn dao động từ 0.2 đến > 4 µm và 1 nm đến 1.60 µm, tương ứng, qua phân tích MICP. Thành phần khoáng vật cũng đóng vai trò quan trọng trong việc bảo vệ các lỗ rỗng trước áp suất từ sự hỏng hóc. Sa thạch nứt và sa thạch hạt thô có chứa các lỗ rỗng lớn và kết nối với nhau, qua đó tăng cường độ rỗng và khả năng thẩm thấu của bể chứa, trong khi sa thạch hạt mịn và đá phèn có chứa nhiều lỗ rỗng nhưng không kết nối tốt, nên chúng có độ rỗng cao với độ thẩm thấu thấp.

Từ khóa


Tài liệu tham khảo

Allen MB, Macdonald DIM, Xun Z, Vincent SJ, Brouet-Menzies C. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Mar Pet Geol. 1997;14(7–8):951–72.

Amaefule JO, Altunbay M, Tiab D, Kersey DG, Keelan DK. Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers. 1993.

Bjørlykke K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sed Geol. 2014;301:1–14.

Barrett EP, Joyner LG, Halenda PP. The determination of pores volume and area distirbution in porous substances. I. Computation from nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.

Brunauer S, Emmett PH, Telle E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

Chalmers G, Bustin R, Powers I. A pore by any other name would be as small; the importance of meso- and microporosity in shale gas capacity. Denver, Colorado: AAPG Annual Convention and Exhibition; 2009. p. 1.

Chalmers GR, Bustin RM, Power IM. Characterization of gas shale pore system by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy image analyses; example from the Barenett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012;96:1099–119.

Chen F, Lu S, Chen F, Lu S, Ding X. Pore type and quantitative evaluation of pore volume in the Longmaxi Formation shale of southeast Chongqing, China. Acta Geol Sin (English Edition). 2018;92(1):342–53.

Chen L, Ji H, Zhang L, Jia H, Zhu Y, Fang Z. Effect of burial processes on the evolution of organic acids and implications for acidic dissolution from a case study of the Nanpu Sag, Bohai Bay Basin, China. J Nat Gas Sci Eng. 2017;39:173–87.

Chen C, Liu Y, Foley SF, Ducea MN, He D, Hu Z, Chen W, Zong K. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones. Geology 2016;44(12):1039–1042.

Clarkson CR, Bustin AM. Variation in micropores capacity and size distribution with composition in bituminous coal of the western Canadian sedimentary basin; implications for coalbed methane potential. Fuel. 1996;75(13):1483–98.

Clarkson CR, Solano N, Bustin A, Chalmers G, He L, Melnichenko YB, et al. Pore structure characterization of North American shale gas reservoir using USANS/SANS, gas adsorption, and mercury intrusion. Fuel. 2013;103:606–16.

Cook JE, Goodwin LB, Boutt DF. Systematic diagenetic changes in the grain-scale morphology and permeability of a quartz-cemented quartz arenite. AAPG Bull. 2011;95(6):1067–88.

Dickson JAD. Carbonate identification and genesis revealed by staining. J Sediment Pet. 1966;36(2):491–505.

Dong Y, Xiao L, Zhou H, Wang C, Zheng J, Zhang N, et al. The tertiary evolution of the prolific Nanpu Sag of Bohai Bay Basin, China: constraints from volcanic records and tectono-stratigraphic sequences. GSA Bull. 2010;122:609–26.

Fawad M, Mondol NH, Jahren J, Bjorlykke K. Microfacies and rock properties of experimentally compressed silt- clay mixtures. Mar Pet Geol. 2010;27:1698–712.

Folk R. Petrology of sedimentary rocks. Austin: Hamphill; 1974. p. 182.

Gong Z. Giant offshore oil and gas fields in China. Beijing: Petroleum Industry Press; 1997 (in Chinese).

Guo J, Xu J, Guo F, Li J, Pang X, Dong Y, et al. Functional-element constraint hydrocarbon distribution model and its application in the 3rd member of Dongying Formation, Nanpu Sag, Bohai Bay Basin, eastern China. J Pet Sci Eng. 2016;139:71–84.

Guo X, He S, Liu K, Song G, Wang X, Shi Z. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying depression, Bohai Bay Basin, China. AAPG Bull. 2010;94(12):1859–81.

Guo X, Liu K, He S, Song G, Wang Y, Hao X, et al. Petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin, China: insight from integrated fluid inclusion analysis and basin modelling. Mar Pet Geol. 2012;32(1):21–35.

Guo Y, Pang X, Dong Y, Jiang Z, Chen D, Jiang F. Hydrocarbon generation and migration in the Nanpu Sag, Bohai Bay Basin, eastern China: insight from basin and petroleum system modeling. J Asian Earth Sci. 2013;77:140–50.

Howard JJ. Porosimetry measurement of shale fabric and its relationship to illite/smectite diagenesis. Clay Clay Miner. 1991;39:355–61.

Hao F, Zhou X, Zhu Y, Yang Y. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China. Org Geochem. 2011;42(4):323–39.

Hollis C, Vahrenkamp V, Tull S, Mookerjee A, Taberner C, Huang Y. Pore system characterisation in heterogeneous carbonates: an alternative approach to widely-used rock-typing methodologies. Mar Pet Geol. 2010;27(4):772–93.

Jiang H, Wang H, Lin ZL, Fang XX, Zhao S, Ren GY. Periodic in rifting activity and its controlling on sedimentary filling of Paleogene period in Nanpu Sag. Acta Sedimentol Sin. 2009;27:976–82 (in Chinese with English abstract).

Kashif M, Cao Y, Yuan G, Jian W, Cheng X, Sun P, & Hassan S. Diagenesis impact on a deeply buried sandstone reservoir (Es1 Member) of the Shahejie Formation, Nanpu Sag, Bohai Bay Basin, East China. Aust J Earth Sci. 2019;66:133–151.

Kashif M, Cao YC, Yuan G, Jian W, Cheng X, Sun P, et al. Diagenesis impact on a deeply buried sandstone reservoir (Es1 Member) of the Shahejie Formation, Nanpu Sag, Bohai Bay Basin, East China. Aust J Earth Sci. 2018;66:1–19.

Loucks RG, Dodge MM, Galloway WE. Regional controls on diagenesis and reservoir quality in lower Tertiary sandstones along othe Texas Gulf Coast: Part 1. Concepts and principles, 1984;15–45.

Loucks RG, Reed RM, Ruppel SC, Hammes U. Spectrum of pore types and network in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012;96:1071–98.

Lai J, Wang G, Wang S, Cao J, Li M, Pang X, et al. Review of diagenetic facies in tight sandstones: diagenesis, diagenetic minerals, and prediction via well logs. Earth Sci Rev. 2018a;185:234–58.

Lai J, Wang G, Fan Z, Chen J, Wang S, Zhou Z, et al. Insight into the pore structure of tight sandstones using NMR and HPMI measurements. Energy Fuels. 2016;30(12):10200–14.

Lai J, Wang G. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques. J Nat Gas Sci Eng. 2015;24:185–96.

Lai J, Wang G, Cai C, Fan Z, Wang S, Chen J, et al. Diagenesis and reservoir quality in tight gas sandstones: the fourth member of the Upper Triassic Xujiahe Formation, Central Sichuan Basin, Southwest China. Geol J. 2018b;53(2):629–46.

Lai J, Wang G, Cao J, Xiao C, Wang S, Pang X, et al. Investigation of pore structure and petrophysical property in tight sandstones. Mar Pet Geol. 2018c;91:179–89.

Mozley PS, Heath JE, Dewers TA, Bauer SJ. Origin and heterogeneity of pore sizes in the Mount Simon Sandstone and Eau Claire Formation: implications for multiphase fluid flow. Geosphere. 2016;12(4):1341–61.

Mondol NH, Bjorlykke K, Jahren J, Hoeg K. Experimental mechanical compaction of clay minerals aggregates: changes in physical properties of mudstones during burial. Mar Pet Geol. 2007;24:289–311.

Nabawy BS, Geraud Y, Rochette P, Bur N. Pore-throat characterization in highly porous and permeable sandstone. AAPG Bull. 2009;93:719–39.

Pittman ED. Relationship of porosity and permeability to various parameters derived from mercury injection capillary pressure curve for sandstone. AAPG Bull. 1992;76:191–8.

Pittman ED. Estimating pore throat size in sandstone from routine core-analysis data: search and discovery article 40009.2001. http://www.searchanddiscovery.net/documents/pittman/index.htm . Accessed 27 Mar 2007.

Ross DJ, Bustin RM. The importance of shale composition and pore structures upon gas storage potential of shale gas reservoir. Mar Pet Geol. 2009;26:916–27.

Rexer TF, Mathia EJ, Aplin AC, Thomas KM. High pressure Methane adsorption and characterization of pores in Posidonia shales and isolated kerogene. Energy Fuels. 2014;28:2886–901.

Rouquerol J, Avnir D, Fairbridge C, Everett D, Haynes J, Pernicone N, et al. Recommendation for the characterization, of porous solids (technical report). Pure Appl Chem. 1994;66:1739–58.

Rose W, Bruce WA. Evaluation of capillary character in petroleum reservoir rock. J Pet Technol. 1949;1(05):127–42.

Ren J, Tamaki K, Li S, Junxia Z. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics. 2002;344(3–4):175–205.

Saiag J, Brigaud B, Portier E, Desaubliaux G. Sedimentological control on the diagenesis and reservoir quality of the tidal sandstone of the Upper Cap Hay Formation (Permian, Bonaparte Basin, Australia). Mar Pet Geol. 2016;77:597–624.

Song GQ, Jiang YL, Liu H, Cai DM. Pooling history of cracked gas in middle-deep reservoirs in Lijin-Minfeng areas of the Dongying sag. Nat Gas Ind. 2009;29(4):14–7.

Schmitt M, Fernandes CP, da Cunha Neto JA, Wolf FG, dos Santos VS. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Mar Pet Geol. 2013a;39:138–49.

Samakinde C, Opuwari M, van Bever Donker J M. The effects of clay diagenesis on petrophysical properties of the lower Cretaceous sandstone reservoirs, Orange Basin, South Africa. S Afr J Geol. 2016;119(1):187–202.

Soeder DJ, Chowdiah P. Pore geometry in high- and low-permeability sandstones, Travis Peak Formation, East Texas. SPE Form Eval. 1990;5(04):421–30.

Schmitt M, Fernandes CP, da Cunha Neto J A, Wolf FG, dos Santos VS. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Mar Pet Geol. 2013b;39(1):138–49.

Schmitt M, Fernandes CP, Wolf FG, da Cunha Neto J A B, Rahner CP, dos Santos VSS. Characterization of Brazilian tight gas sandstones relating permeability and Angstrom-to micron-scale pore structures. J Nat Gas Sci Eng. 2015;2:785–807.

Tavakoli V, Rahimpour-Bonab H, Esrafili-Dizaji B. Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach. CR Geosci. 2011;343(1):55–71.

Taghavi AA, Mørk A, Emadi MA. Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran. Pet Geosci. 2006;12(2):115–26.

Tian H, Pan L, Zhang T, Xiao X, Meng Z, Huang B. Pore characterization of organic-rich lower Cambrian shales in Qiannan depression of Guizhou province, Southwestern China. Mar Pet Geol 2015;62:28–43.

Vavra CL, Kaldi JG, Sneider RM. Geological applications of capillary pressure: a review (1). AAPG Bull. 1992;76(6):840–50.

Xu AN, Dong YX, Zou CN, Wang ZC, Zheng HJ, Wang XD, et al. Division and evaluation of oil–gas prolific zones for litho-stratigraphic reservoirs in the Nanpu Sag. Pet Explor Dev. 2008a;35(3):272–80.

Xie X, Fan Z, Liu X, Lu Y. Geochemistry of formation water and its implication on over pressured fluid flow in the Dongying depression of the Bohaiwan Basin, China. J Geochem Explor. 2006;89(1–3):432–5.

Xu QQ, Ji JQ, Wang JD, Wang ZL, Han WG, Yu JG. Active mode of the Tan-Lu fault zone in early Cenozoic. Chin J Geol. 2008b;43(2):402–14.

Wang H, Wang F, Zhou H, Dong Y. Thermal evolution dynamics of Nanpu Sag, Bohai Bay Basin, and its hydrocarbon accumulation dynamics. Wuhan: China University of Geosciences Press; 2002 (in Chinese with English abstract).

Wang YZ. Genetic mechanism and evolution model of secondary pore development zone of Paleogene in the north zone in Dongying depression. Qingdao: China Univ Pet (Huadong); 2010.

Xi K, Cao Y, Haile BG, Zhu R, Jahren J, Bjørlykke K, Zhang X, Hellevang, H. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. Mar Petr Geol 2016;76:1–15.

Yang Y, Aplin AC. Permeability and petrophysical properties of 30 natural mudstones. J Geophys Res: Solid Earth. 2007;112(B3):2007.

Yuan G, Gluyas J, Cao Y, Oxtoby N, Jia Z, Wang Y, Li X. Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Dongying Sag, Bohai Bay Basin, East China. Mar Pet Geol 2015;62:77–89.

Yue D, Wu S, Xu Z, Xiong L, Chen D, Ji Y, et al. Reservoir quality, natural fractures, and gas productivity of upper Triassic Xujiahe tight gas sandstones in western Sichuan Basin, China. Mar Pet Geol. 2018;89:370–86.

Zhang S, Cao Y, Jahren J, Zhu R, Mao Z, Xi K, et al. Pore characteristics of the fine-grained tight reservoirs in the Yabulai Basin, Northwestern China. Acta Geol Sin (English Edition). 2018;92(3):1170–92.

Zhu G, Jin Q. Geochemistry characters study of two sets of high quality source rock in Dongying Sag. Acta Sedimentol Sin. 2003;21:506–12 (in Chinese).

Zhang Q, Zhu X, Steel RJ, Zhong D. Variation and mechanisms of clastic reservoir quality in the Paleogene Shahejie Formation of the Dongying Sag, Bohai Bay Basin, China. Pet Sci. 2014;11(2):200–10.

Zhang LH, Zhou CC, Liu GQ, Liu ZH, Zhang L. Origin and property differences of various types of low-porosity and low-permeability reservoirs and well logging evaluation strategies. Shiyou Kantan Yu Kaifa (Pet Explor Dev). 2007;34(6):702–10.

Zou C, Zhu R, Liu K, Su L, Bai B, Zhang X, et al. Tight gas sandstone reservoirs in China: characteristics and recognition criteria. J Pet Sci Eng. 2012;88:82–91.