Cấu trúc quần thể và lập bản đồ liên kết các đặc điểm liên quan đến sự phát triển sinh sản trong đậu Hà Lan

Euphytica - Tập 213 - Trang 1-20 - 2017
Yunfei Jiang1, Marwan Diapari1,2,3, Rosalind A. Bueckert1, Bunyamin Tar’an1,2, Thomas D. Warkentin1,2
1Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
2Crop Development Centre, University of Saskatchewan, Saskatoon, Canada
3Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Canada

Tóm tắt

Đậu Hà Lan (Pisum sativum) là một loại cây họ đậu quan trọng trên toàn cầu cho tiêu dùng của con người và làm thức ăn cho gia súc. Một nhóm 92 giống đậu đa dạng đã được đánh giá dựa trên chín môi trường và genotyped bằng 1536 biến gen nucleotide đơn (SNP) sắp xếp theo mảng GoldenGate. Phân tích cấu trúc quần thể tiết lộ ba tiểu quần thể tương ứng với nguồn gốc của giống. Việc định dạng bao gồm thời gian ra hoa (DTF), thời gian ra hoa (DOF), số lượng nút sinh sản, số lượng quả trên thân chính, tỷ lệ quả được hình thành, tỷ lệ quả giữ được hạt và sự giảm khả năng nảy mầm của phấn hoa do stress nhiệt. Các phân tích liên kết đã xác định tổng cộng 60 SNP có liên quan đáng kể (−log10 p ≥ 4.3) với bảy đặc điểm liên quan đến sự phát triển sinh sản này. Trong số 60 liên kết giữa dấu hiệu và tính trạng này, có 33 SNP liên quan đến sự xuất hiện của hoa, 8 SNP liên quan đến sự phát triển của quả và 19 SNP liên quan đến số lượng nút sinh sản. Không có dấu hiệu SNP nào liên quan đáng kể đến sự giảm khả năng nảy mầm của phấn hoa in vitro do stress nhiệt độ cao. Chúng tôi phát hiện rằng 12 SNP liên quan đến DTF và 2 SNP liên quan đến DOF đã chồng chéo với các dấu hiệu SNP liên quan đến số lượng nút sinh sản. Các vùng gen liên quan đến sự biến đổi của các đặc điểm liên quan đến phát triển sinh sản được xác định trong nghiên cứu này cung cấp cơ sở cho sự cải tiến gen trong tương lai đối với đậu Hà Lan.

Từ khóa

#đậu Hà Lan #Pisum sativum #SNP #cấu trúc quần thể #phát triển sinh sản #định dạng #nảy mầm phấn hoa #stress nhiệt

Tài liệu tham khảo

Agrama H, Eizenga A, Yan G (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356 Ahmad S, Kaur S, Lamb-Palmer ND, Lefsrud M, Singh J (2015) Genetic diversity and population structure of Pisum sativum accessions for marker-trait association of lipid content. Crop J 3:238–245 Ahmed FE, Hall AE, DeMason DA (1992) Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Am J Bot 79:784–791 Alcade JA, Wheeler TR, Summerfield RJ, Norero AL (1999) Quantitative effects of the genes Lf, Sn, E, and Hr on time to flowering in pea (Pisum sativum L.). J Exp Bot 50:1691–1700 Alcalde JA, Larrain MF (2006) Timing of photoperiod sensitivity in relation to floral initiation in contrasting genotypes of pea (Pisum sativum L.). Field Crops Res 96:348–354 Annicchiarico P, Nazzicari N, Pecetti L, Romani M, Ferrari B, Wei Y, Brummer EC (2017) GBS-based genomic selection for pea grain yield under severe terminal drought. Plant Genome 10:1–13 Benlloch R, Berbel A, Ali L, Gohari G, Millán T, Madueño F (2015) Genetic control of inflorescence architecture in legumes. Front Plant Sci 6:543 Berger JD, Ali M, Basu PS, Chaudhary BD, Chaturvedi SK, Deshmukh PS, Yadav SS (2006) Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crop Res 98:230–244 Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F, Marget P, Aubert G, Burstin J (2011) Translational genomics in legumes allowed placing in Silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 1:93–103 Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635 Brazauskas G, Lenk I, Pedersen MG, Studer B, Lübberstedt T (2011) Genetic variation, population structure and linkage disequilibrium in European elite germplasm of perennial ryegrass. Plant Sci 181:412–420 Bueckert RA, Wagenhoffer S, Hnatowich G, Warkentin TD (2015) Effect of heat and precipitation on pea yield and reproductive performance in the field. Can J Plant Sci 95:629–639 Cheng P, Holdsworth W, Ma Y, Coyne CJ, Mazourek M, Grusak MA, Fuchs S, McGee RJ (2015) Association mapping of agronomic and quality traits in USDA pea single-plant collection. Mol Breed 35:75 Desclaux D, Roumet P (1996) Impact of drought stress on the phenology of two soybean (Glycine max L. Merr) cultivars. Field Crop Res 46:61–70 Desgroux A, L’Anthoëne V, Roux-Duparque M, Rivière J, Aubert G, Tayeh N, Moussart A, Mangin P, Vetel P, Piriou C, McGee RJ, Coyne CJ, Burstin J, Baranger A, Manzanares-Dauleux M, Bourion V, Pilet-Nayel M (2016) Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genom 17:124 Devasirvatham V, Gaur PM, Mallikarjuna N, Tokachichu RN, Trethowan RM, Tan DKY (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39:1009–1018 Diapari M, Sindhu A, Bett K, Deokar A, Warkentin TD, Tar’an B (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:459–468 Diapari M, Sindhu A, Warkentin TD, Bett K, Tar’an B (2015) Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed 35:30 Dolezel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytometry Part A 77:635–642 Earl DA, VonHoldt BM (2012) Structure Harvester: a website and program for visualizing structure output and implementing the evanno method. Conserv Genet Resour 4:359–361 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620 FAOSTAT (2016) Taken from http://faostat3.fao.org/browse/Q/QC/E 8 Oct 2016 Ferrari B, Romani M, Aubert G, Boucherot K, Burstin J, Pecetti L, Huart-Naudet M, Klein A, Annicchiarico P (2016) Association of SNP markers with agronomic and quality traits of field pea in Italy. Czech J Genet Plant Breed 52:83–93 Frova C, Sari-Gorla M (1994) Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol Gen Genet 245:424–430 Hall AE (2004) Breeding for adaptation to drought and heat in cowpea. Eur J Agron 21:447–454 Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. University of California, Berkeley, pp 35–39 Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161 Holmes MG, Smith H (1975) Function of phytochrome in plants growing in natural-environment. Nature 254:512–514 Huang S, Gali KK, Tar’an B, Warkentin TD, Bueckert RA (2017) Pea phenology: crop potential in a warming environment. Crop Sci 57:1540–1551 Jiang Y (2016) Effect of heat stress on pollen development and seed set in field pea. University of Saskatchewan, Saskatoon Jiang Y, Lahlali R, Karunakaran C, Kumar S, Davis AR, Bueckert RA (2015) Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ 38:2387–2397 Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405 Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94 Kakani VG, Prasad PVV, Craufurd PQ, Wheeler TR (2002) Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ 25:1651–1661 Kang MS, Balzarini MG, Guerra JLL (2004) Genotype-by-environment interaction. In: Saxton AM (ed) Genetic analysis of complex traits using SAS. SAS Institute, Cary Konsens I, Ofir M, Kigel J (1991) The effect of temperature on the production and abscission of flowers and pods in snap bean (Phaseolus vulgaris L.). Ann Bot 67:391–399 Krajewski P, Bocianowski J, Gawłowska M, Kaczmarek Z, Pniewski T, Święcicki W, Wolko B (2012) QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183:323–336 Kwon S, Brown AF, Hu J, McGee R, Watt C, Kisha T, Timmerman-Vaughan G, Grusak M, McPhee KE, Coyne CJ (2012) Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection. Genes Genom 34:305–320 Lahlali R, Jiang Y, Kumar S, Karunakaran C, Liu X, Borondics F, Hallin E, Bueckert R (2014) ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front Plant Sci 5:747 Li Y, Smulders M, Chang J, Qiu M (2011) Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis. Conserv Genet 12:1145–1157 Liew LC, Hecht V, Sussmilch FC, Weller JL (2014) The pea photoperiod response gene STERILE NODES is an ortholog of LUX ARRHYTHMO. Plant Physiol 165:648–657 Marjanović-Jeromela A, Nagl N, Gvozdanović-Varga J, Hristov N, Kondić-Špika A, Vasić M, Marinković R (2011) Genotype by environment interaction for seed yield per plant in rapeseed using AMMI model. Pesq agropec bras 46:174–181 Mobini SH, Lulsdorf M, Warkentin T, Vandenberg A (2016) Low red:far-red light ratio causes faster in vitro flowering in lentil. Can J Plant Sci 96:908–918 Morrell P, Buckler E, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nature Rev Genet 13:85–96 Murfet IC (1985) Pisum sativum. In: Halevy AH (ed) CRC handbook of flowering, vol IV. CRC Press. Boca Raton, FL, pp 97–126 Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202 Nemli S, Asciogul TK, Kaya HB, Kahraman A, Eşiyok D, Tanyolac B (2014) Association mapping for five agronomic traits in the common bean (Phaseolus vulgaris L.). J Sci Food Agric 94:3141–3151 Petkova V, Nikolova V, Kalapchieva SH, Stoeva V, Topalova E, Angelova S (2009) Physiological response and pollen viability of Pisum sativum genotypes under high temperature influence. Acta Hortic 830:665–671 Pierre J, Huguet T, Barre P, Huyghe C, Julier B (2008) Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theor Appl Genet 117:609–620 Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959 Reid JB, Murfet IC, Singer SR, Weller JL, Taylor SA (1996) Physiological-genetics of flowering in Pisum. Semin Cell Dev Biol 7:455–463 Roche R, Jeuffroy M, Ney B (1998) A model to simulate the final number of reproductive nodes in pea (Pisum sativum L.). Ann Bot 81:545–555 Sabaghnia N, Sabaghpour SH, Dehghani H (2008) The use of an AMMI model and its parameters to analyse yield stability in multi-environment trials. J Agric Sci 146:571–581 Sakiroglu M, Sherman-Broyles S, Story A, Moore K, Doyle JJ, Charles BE (2012) Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.). Theor Appl Genet 125:577–590 Salem MA, Kakani VG, Koti S, Reddy KR (2007) Pollen-based screening of soybean genotypes for high temperatures. Crop Sci 47:219–231 Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304 Shi C, Navabi A, Yu K (2011) Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11:52 Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J, Shunmugam ASK, Liu Y, Jha AB, Diapari M, Burstin J, Aubert G, Tar’an B, Bett KE, Warkentin TD, Sharpe AG (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241 Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Bing D (2004) Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136:297–306 Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao N, Fikre A, Kimurto P, Sharma PC, Sheshashavee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLOS One 9:e96758 Timmerman-Vaughan GM, Mills A, Whitfield C, Frew T, Butler R, Murray S, Lakeman M, McCallum J, Russell A, Wilson D (2005) Linkage mapping of QTL for seed yield, yield components, and developmental traits in pea. Crop Sci 45:1336–1344 Truong H, Duthion C (1993) Time of flowering of pea (Pisum sativum L.) as a function of leaf appearance rate and node of first flower. Ann Bot 72:133–142 Vanhala T, Normann KR, Lundstrom M, Weller JL, Leino MW, Hagenblad J (2016) Flowering time adaption in Swedish landrace pea (Pisum sativum L.). BMC Genet 17:117 Varshney RK, Ribaut J, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? Nat Biotechnol 30:1172–1176 Wang H, Smith KP, Combs E, Blake T, Horsley RD, Muehlbauer GJ (2012) Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet 124:111–124 Wang N, Chen B, Xu K, Gao G, Li F, Qiao J, Yan G, Li J, Li H, Wu X (2016) Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci 7:338 Weller J, Ortega R (2015) Genetic control of flowering time in legumes. Front Plant Sci 6:207 Weller JL, Reid JB, Taylor SA, Murfet IC (1997) The genetic control of flowering in pea. Trends Plant Sci 2:412–418 Weller JL, Hecht V, Liew LC, Sussmilch FC, Wenden B, Knowles CL, Vander SJK (2009) Update on the genetic control of flowering in garden pea. J Exp Bot 60:2493–2499 Xiao YH, Pan Y, Luo LH, Deng HB, Zhang GL, Tang WB, Chen LY (2011) Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice (Oryza sativa). Rice Sci 18:204–209 Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551 Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20