Polytopes, graphs, and complexes

Bulletin of the American Mathematical Society - Tập 76 Số 6 - Trang 1131-1201
Branko Grünbaum

Tóm tắt

Từ khóa


Tài liệu tham khảo

G. L. Alexanderson and J. E. Wetsel, 1970. Dissection of a tetrahedron, [p. 1171]

Allendoerfer, Carl B., 1943, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc., 53, 101, 10.2307/1990134

A. Altshuler, 1969. Polyhedral realizations in R 2-manifolds in convex 4-polytopes, Ph.D. Thesis, Hebrew University, Jerusalem, 1969. (Hebrew) [p. 1138]

Altshuler, Amos, 1970, Lattice characterization of convex 3-polytopes and of polygonizations of 2-manifolds, Israel J. Math., 8, 57, 10.1007/BF02771551

Ang, D. D., 1969, On Schoenberg’s rational polygon problem, J. Austral. Math. Soc., 9, 337, 10.1017/S1446788700007266

Anonymous, 1964. Programma van jaarlijkse Prijsvragen, Nieuw Arch. Wisk. (3) 12 (1964), 60-65. [p. 1142]

Balinski, M. L., 1961, On the graph structure of convex polyhedra in 𝑛-space, Pacific J. Math., 11, 431, 10.2140/pjm.1961.11.431

Banchoff, Thomas, 1967, Critical points and curvature for embedded polyhedra, J. Differential Geometry, 1, 245

Bantegnie, Robert, 1965, Espaces de formes affines, C. R. Acad. Sci. Paris, 261, 2554

Barnette, David, 1966, Trees in polyhedral graphs, Canadian J. Math., 18, 731, 10.4153/CJM-1966-073-4

Barnette, David, 1967, A necessary condition for 𝑑-polyhedrality, Pacific J. Math., 23, 435, 10.2140/pjm.1967.23.435

Barnette, David, 1969, On 𝑝-vectors of 3-polytopes, J. Combinatorial Theory, 7, 99, 10.1016/S0021-9800(69)80042-6

Barnette, D., 1969, A simple 4-dimensional nonfacet, Israel J. Math., 7, 16, 10.1007/BF02771742

Barnette, David, 1970, A completely unambiguous 5-polyhedral graph, J. Combinatorial Theory, 9, 44, 10.1016/S0021-9800(70)80053-9

Barnette, David, 1970, Diagrams and Schlegel diagrams, 1

Barnette, David W., 1971, The graphs of polytopes with involutory automorphisms, Israel J. Math., 9, 290, 10.1007/BF02771679

Barnette, David W., 1970, Projections of 3-polytopes, Israel J. Math., 8, 304, 10.1007/BF02771563

D. W. Barnette, 1970e. On the enumeration of combinatorial spheres and triangulations of the 3-sphere (to appear), [p. 1137, p. 1182]

D. W. Barnette, 1970f. The sum of the solid angles of a d-polytope. (to appear) [p. 1184]

Barnette, David W., 1969, On Steinitz’s theorem concerning convex 3-polytopes and on some properties of planar graphs, 27

Barnette, David, 1970, Preassigning the shape of a face, Pacific J. Math., 32, 299, 10.2140/pjm.1970.32.299

Barnette, David, 1970, Hamiltonian circuits on 3-polytopes, J. Combinatorial Theory, 9, 54, 10.1016/S0021-9800(70)80054-0

Barnette, D., 1971, Toroidal maps with prescribed types of vertices and faces, Mathematika, 18, 82, 10.1112/S0025579300008408

D. W. Barnette and G. Wegner, 1970. A 3-sphere that is not 4-polyhedral (to appear), [p. 1137, p. 1156, p. 1182]

Berg, Christian, 1969, Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk., 37, 64

Berg, Christian, 1971, Abstract Steiner points for convex polytopes, J. London Math. Soc. (2), 4, 176, 10.1112/jlms/s2-4.1.176

Bernstein, A. J., 1967, Maximally connected arrays on the 𝑛-cube, SIAM J. Appl. Math., 15, 1485, 10.1137/0115129

Besicovitch, A. S., 1959, Rational polygons, Mathematika, 6, 98, 10.1112/S0025579300001984

W. Blaschke, 1915. Einige Bemerkungen über Kurven und Flächen konstanter Breite, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 67 (1915), 290-297. [p. 1165]

Bolker, Ethan D., 1969, A class of convex bodies, Trans. Amer. Math. Soc., 145, 323, 10.2307/1995073

Bolker, Ethan D., 1970, Centrally symmetric polytopes, 255

Bollobás, B., 1967, Fixing system for convex bodies, Studia Sci. Math. Hungar., 2, 351

W. E. Bonnice and L. M. Kelly, 1970. On the number of ordinary planes(to appear). [p. 1171]

Bonnice, William, 1963, The generation of convex hulls, Math. Ann., 152, 1, 10.1007/BF01343728

Bonnice, William E., 1969, Relative interiors of convex hulls, Proc. Amer. Math. Soc., 20, 246, 10.2307/2036001

Bosák, J., 1967, Hamiltonian lines in cubic graphs, 35

Bott, Raoul, 1952, Two new combinatorial invariants for polyhedra, Portugal. Math., 11, 35

Böttger, G., 1964, Note on a problem by S. L. Hakimi concerning planar graphs without parallel elements, J. Soc. Indust. Appl. Math., 12, 838, 10.1137/0112070

Bowen, Rufus, 1967, Generations of triangulations of the sphere, Math. Comp., 21, 250, 10.2307/2004172

T. A. Brown, 1960. The representation of planar graphs by convex polyhedra, Note P-2085, The Rand Corp., Santa Monica, Calif., 1960. [p. 1138]

Brown, Thomas A., 1961, Simple paths on convex polyhedra, Pacific J. Math., 11, 1211, 10.2140/pjm.1961.11.1211

Brown, William G., 1965, Historical Note on a Recurrent Combinatorial Problem, Amer. Math. Monthly, 72, 973, 10.2307/2313332

M. Brückner, 1893. Die Elemente der vierdimensionalen Geometrie mit besonderer Berücksichtigung der Polytope, Jber. Ver. Naturkunde Zwickau 1893, 61 pp. [p. 1173]

M. Brückner, 1909. Über die Ableitung der allgemeinen Polytope und die nach Isomorphismus verschiedenen Typen der allgemeinen Achtzelle (Oktatope), Verh. Konink. Akad. Wetensch. 10 (1909), no. 1, 29 pp. [p. 1137, p. 1173]

Bruggesser, H., 1971, Shellable decompositions of cells and spheres, Math. Scand., 29, 197, 10.7146/math.scand.a-11045

Cairns, Stewart S., 1940, Triangulated manifolds which are not Brouwer manifolds, Proc. Nat. Acad. Sci. U.S.A., 26, 359, 10.1073/pnas.26.5.359

Canham, R. J., 1969, A theorem on arrangements of lines in the plane, Israel J. Math., 7, 393, 10.1007/BF02788872

Carathéodory, C., 1907, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64, 95, 10.1007/BF01449883

Carlitz, L., 1961, The sum of the angles in an 𝑛-dimensional simplex, Amer. Math. Monthly, 68, 901, 10.2307/2311696

A. Cayley, 1862. On the ∆-faced polyacrons in reference to the problem of the enumeration of polyhedra, Mem. Lit. Philos. Soc. Manchester 1 (1862), 248-256

Coll. Math. Papers 5 (1892), 38-43. [p. 1135]

Chrislock, J. L., 1966, Mathematical Notes: Imbedding a Skeleton of a Simplex in Euclidean Space, Amer. Math. Monthly, 73, 381, 10.2307/2315406

J. Chuard, 1932. Les réseaux cubiques et le problème des quatres couleurs, Mém. Soc. Vaudoise Sci. Nat. 4 (1932), 41-101. [p. 1143]

Chuard, Jules, 1966, Graphes planaires homogènes de degré 3, J. Combinatorial Theory, 1, 411, 10.1016/S0021-9800(66)80014-5

Chvátal, V., 1969, Planarity of graphs with given degrees of vertices, Nieuw Arch. Wisk. (3), 17, 47

Clements, G. F., 1971, Sets of lattice points which contain a maximal number of edges, Proc. Amer. Math. Soc., 27, 13, 10.2307/2037250

Clements, G. F., 1969, A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory, 7, 230, 10.1016/S0021-9800(69)80016-5

Coolidge, Julian Lowell, 1940, A History of Geometrical Methods

Coxeter, H. S. M., 1962, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. (9), 41, 137

Crowe, D. W., 1969, Nearly regular polyhedra with two exceptional faces, 63

D. W. Crowe and J. Molnár, 1969. On polyhedra with specified types of face, Math. Gaz. 53 (1969), 45-50. [p. 1143]

Dalkey, Norman C., 1967, Parity patterns on even triangulated polygons, J. Combinatorial Theory, 2, 100, 10.1016/S0021-9800(67)80117-0

Danzer, Ludwig, 1963, Helly’s theorem and its relatives, 101

Davis, Chandler, 1954, Theory of positive linear dependence, Amer. J. Math., 76, 733, 10.2307/2372648

Daykin, D. E., 1963, Rational polygons, Mathematika, 10, 125, 10.1112/S0025579300004046

Debrunner, Hans, 1955, Zu einem massgeometrischen Satz über Körper konstanter Breite, Math. Nachr., 13, 165, 10.1002/mana.19550130307

Derry, Douglas, 1968, Polygons of order 𝑛 in 𝐿_{𝑛} with 𝑛+2 vertices, Math. Scand., 23, 73, 10.7146/math.scand.a-10899

Dinghas, Alexander, 1940, Verallgemeinerung eines Blaschkeschen Satzes über konvexe Körper konstanter Breite, Rev. Math. Union Interbalkan., 3, 17

Duke, R. A., 1970, Geometric embedding of complexes, Amer. Math. Monthly, 77, 597, 10.2307/2316735

V. Eberhard, 1891. Zur Morphologie der Polyeder, Teubner, Leipzig, 1891. [p. 1138; p. 1140]

Eggleston, H. G., 1964, Some semicontinuity theorems for convex polytopes and cell-complexes, Comment. Math. Helv., 39, 165, 10.1007/BF02566949

Ewald, Günter, 1965, Von Klassen konvexer Körper erzeugte Hilberträume, Math. Ann., 162, 140, 10.1007/BF01361940

Ewald, Günter, 1966, Normed vector spaces consisting of classes of convex sets, Math. Z., 91, 1, 10.1007/BF01113848

L. Euler, 1752a. Elementa doctrinae solidorum, Comment. Acad. Sci. Imp. Petrop. 4 (1752/ 53), 109-140. [p. 1173]

L. Euler, 1752b. Demonstratio nonullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita, Comment. Acad. Sci. Imp. Petrop. 4 (1752/53), 140-160. [p. 1173]

Fáry, István, 1948, On straight line representation of planar graphs, Acta Univ. Szeged. Sect. Sci. Math., 11, 229

Fáry, István, 1949, Sur la courbure totale d’une courbe gauche faisant un nœud, Bull. Soc. Math. France, 77, 128, 10.24033/bsmf.1405

I. Fáry, 1960. Translation invariant, additive functionals related to mixed volumes, ONR Technical Report, Berkeley, 1960. [p. 1166]

Fáry, I., 1961, Functionals related to mixed volumes, Illinois J. Math., 5, 425, 10.1215/ijm/1255630888

Federico, P. J., 1969, Enumeration of polyhedra: The number of 9-hedra, J. Combinatorial Theory, 7, 155, 10.1016/S0021-9800(69)80050-5

Fejes Tóth, L., 1962, On primitive polyhedra, Acta Math. Acad. Sci. Hungar., 13, 379, 10.1007/BF02020800

Firey, William J., 1964, Addition and decomposition of convex polytopes, Israel J. Math., 2, 91, 10.1007/BF02759949

Flanders, Harley, 1966, The Steiner point of a closed hypersurface, Mathematika, 13, 181, 10.1112/S0025579300003946

A. Flores, 1932. Über die Existenz n-dimensionaler Komplexe, die nicht in den R, Ergebnisse Math. Kolloq. 5 (1932), 17-24. [p. 1135]

A. Flores, 1933. Über n-dimensionale Komplexe, die im R, Ergebnisse Math. Kolloq. 6 (1933), 4-6. [p. 1135]

Gale, David, 1963, Neighborly and cyclic polytopes, 225

T. Gallai, 1970. Signierte Zellenzerlegungen, Acta Math. Acad. Sci. Hungar. (to appear), [p. 1142]

D. W. Grace, 1965. Computer search for non-isomorphic convex polyhedra, Report CS 15, Computer Science Dept., Stanford University, Stanford, Calif., 1965. [p. 1173]

Grinberg, È. Ja., 1968, Plane homogeneous graphs of degree three without Hamiltonian circuits., 51

Grötzsch, Herbert, 1955, Zur Theorie der diskreten Gebilde. I. Elementare kombinatorische Eigenschaften gewisser Dreikantnetze auf der Kugel und der einfach punktierten Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 5, 839

Grötzsch, Herbert, 1962, Zur Theorie der diskreten Gebilde. 15. Mitteilung: Zusatzbemerkungen, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 11, 733

Grünbaum, Branko, 1963, Unambiguous polyhedral graphs, Israel J. Math., 1, 235, 10.1007/BF02759726

Grünbaum, Branko, 1963, Measures of symmetry for convex sets, 233

Grünbaum, B., 1964, Fixing systems and inner illumination, Acta Math. Acad. Sci. Hungar., 15, 161, 10.1007/BF01897033

Grünbaum, Branko, 1965, On the facial structure of convex polytopes, Bull. Amer. Math. Soc., 71, 559, 10.1090/S0002-9904-1965-11329-5

Grünbaum, Branko, 1967, Convex polytopes

B. Grünbaum, 1967b. The number of faces of convex polytopes, Proc. Colloq. Convexity (Copenhagen, 1965) Københavns Univ. Mat. Inst., Copenhagen, 1967. [p. 1131p. 1149]

Grünbaum, B., 1968, Some analogues of Eberhard’s theorem on convex polytopes, Israel J. Math., 6, 398, 10.1007/BF02771220

Grünbaum, Branko, 1968, Grassmann angles of convex polytopes, Acta Math., 121, 293, 10.1007/BF02391916

Grünbaum, Branko, 1969, Planar maps with prescribed types of vertices and faces, Mathematika, 16, 28, 10.1112/S0025579300004587

Grünbaum, Branko, 1969, Graphs, complexes, and polytopes, 85

Grünbaum, Branko, 1969, Some results on the upper bound conjecture for convex polytopes, SIAM J. Appl. Math., 17, 1142, 10.1137/0117105

Grünbaum, Branko, 1969, Imbeddings of simplicial complexes, Comment. Math. Helv., 44, 502, 10.1007/BF02564551

Grünbaum, Branko, 1970, Nerves of simplicial complexes, Aequationes Math., 4, 63, 10.1007/BF01817747

B. Grünbaum, 1970a. Some combinatorial problems, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 500-501. [p. 1135, 1139]

B. Grünbaum, 1970b. On the enumeration of convex polytopes and combinatorial spheres(to appear), [p. 1137, p. 1156, p. 1182]

Grünbaum, Branko, 1970, On combinatorial spheres, 119

Grünbaum, Branko, 1970, The importance of being straight, 243

Grünbaum, Branko, 1972, Arrangements and spreads, 10.1090/cbms/010

B. Grünbaum, 1970f. Valence sequence and related topics. [p. 1142]

Grünbaum, Branko, 1970, Higher-dimensional analogs of the four-color problem and some inequalities for simplicial complexes, J. Combinatorial Theory, 8, 147, 10.1016/S0021-9800(70)80071-0

Grünbaum, B., 1962, Longest simple paths in polyhedral graphs, J. London Math. Soc., 37, 152, 10.1112/jlms/s1-37.1.152

Grünbaum, Branko, 1963, On polyhedral graphs, 285

Grünbaum, B., 1963, The number of hexagons and the simplicity of geodesics on certain polyhedra, Canadian J. Math., 15, 744, 10.4153/CJM-1963-071-3

Grünbaum, B., 1969, Convex polytopes, Bull. London Math. Soc., 1, 257, 10.1112/blms/1.3.257

Grünbaum, Branko, 1967, An enumeration of simplicial 4-polytopes with 8 vertices, J. Combinatorial Theory, 2, 437, 10.1016/S0021-9800(67)80055-3

R. K. Guy, 1967. Dissecting a polygon into triangles, Research Paper, no. 9, Dept. of Mathematics, University of Calgary, Calgary, Alberta, 1967. [p. 1173]

Hadwiger, H., 1957, Vorlesungen \"{u}ber Inhalt, Oberfl\"{a}che und Isoperimetrie, 10.1007/978-3-642-94702-5

H, Hadwiger, 1958. Ungelöste Probleme, No. 24, Elem. Math. 13 (1958), 85. [p. 1181]

Hadwiger, H., 1968, Eine Schnittrekursion für die Eulersche Charakteristik euklidischer Polyeder mit Anwendungen innerhalb der kombinatorischen Geometrie, Elem. Math., 23, 121

Hadwiger, H., 1969, Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper, Israel J. Math., 7, 168, 10.1007/BF02771664

Hadwiger, H., 1969, Eckenkrümmung beliebiger kompakter euklidischer Polyeder und Charakteristik von Euler-Poincaré, Enseign. Math. (2), 15, 147

Hadwiger, H., 1969, Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper, Israel J. Math., 7, 168, 10.1007/BF02771664

Hadwiger, H., 1960, Kombinatorische Geometrie in der Ebene

Hadwiger, Hugo, 1964, Combinatorial geometry in the plane

Hakimi, S. L., 1962, On realizability of a set of integers as degrees of the vertices of a linear graph. I, J. Soc. Indust. Appl. Math., 10, 496, 10.1137/0110037

Halin, R., 1966, Zu einem Problem von B. Grünbaum, Arch. Math. (Basel), 17, 566, 10.1007/BF01899431

Hansel, G., 1967, Problèmes de dénombrement et d’évaluation de bornes concernant les éléments du treillis distributif libre, Publ. Inst. Statist. Univ. Paris, 16, 159

Hansen, Wolfhard, 1969, Intersection theorems for positive sets, Proc. Amer. Math. Soc., 22, 450, 10.2307/2037076

Harper, L. H., 1964, Optimal assignments of numbers to vertices, J. Soc. Indust. Appl. Math., 12, 131, 10.1137/0112012

Hauschild, K., 1967, Über Färbungen von 4-regulären Landkarten, Wiss. Z. Tech. Hochsch. Ilmenau, 13, 399

Hauschild, Kurt, 1968, Über ein Färbungsproblem auf der Kugel, 61

A. F. Hawkins, A. C. Hill, J. E. Reeve and J. A. Tyrrell, 1966. On certain polyhedra, Math. Gaz. 50 (1966), 140-144. [p. 1143]

P. J. Heawood, 1936. Failures in congruences connected with the four-colour map theorem, Proc. London Math. Soc.

(2) 40 (1936), 189-202. [p. 1142]

F. Hering, 1969. Untersuchungen über die kombinatorische Struktur von Polyedern, Ph.D. Thesis, Bonn, 1969. [p. 1134]

O. Hermes, 1899. Die Formen der Vielfläche, J. Reine Angew. Math. 120 (1899), 27-59, 305- 353; ibid. 122 (1900), 124-154; 123 (1901), 312-342. [p. 1174]

Höhn, Walter, 1953, Winkel und Winkelsumme im $n$-dimensionalen euklidischen Simplex

H. F. Hunter, 1962a. On non-Hamiltonian maps and their duals, Ph.D. Thesis, Rensselaer Polytech. Inst., 1962. [p. 1143]

Jucovič, Ernest, 1962, Self-conjugate 𝐾-polyhedra, Mat.-Fyz. \v{C}asopis. Sloven. Akad. Vied., 12, 1

Jucovič, Ernest, 1968, A note on paths in quadrangular polyhedral graphs, \v{C}asopis P\v{e}st. Mat., 93, 69, 10.21136/CPM.1968.108658

Jucovič, E., 1969, On polyhedral realizability of certain sequences, Canad. Math. Bull., 12, 31, 10.4153/CMB-1969-004-1

Jucovič, Ernest, 1971, On the number of hexagons in a map, J. Combinatorial Theory Ser. B, 10, 232, 10.1016/0095-8956(71)90047-5

Jucovič, Ernest, 1970, Characterization of the 𝑝-vector of a self-dual 3-polytope, 185

E. Jucovič, 1970c. On the p-vector of a 4-valent convex and toroidal 3-polytope, (to appear), [p.1150]

Jung, H. A., 1967, Zusammenzüge und Unterteilungen von Graphen, Math. Nachr., 35, 241, 10.1002/mana.19670350503

H. A. Jung, 1970a. A variation of n-connectedness, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 189-191. [p. 1135]

Jung, H. A., 1970, Eine Verallgemeinerung des 𝑛-fachen Zusammenhangs für Graphen, Math. Ann., 187, 95, 10.1007/BF01350174

E. R. van Kampen, 1932. Komplexe in Euklidischen Räumen, Abh. Math. Sem. Univ. Hamburg 9 (1932), 72-78. [p. 1135]

van Kampen, E. R., 1941, Remark on the address of S. S. Cairns, 311

Katona, G., 1968, A theorem of finite sets, 187

Kelly, L. M., 1972, Simple points in pseudoline arrangements, Pacific J. Math., 40, 617, 10.2140/pjm.1972.40.617

T. P. Kirkman, 1854. On the representation and enumeration of polyedra, Mem. Lit. Philos. Soc. Manchester

(2) 12 (1854), 47-70 [p. 1173]

T. P. Kirkman, 1857. On autopolar polyedra, Philos. Trans. Roy. Soc. London 147 (1857), 183-215. [p. 1137, p. 1138]

Klee, Victor, 1964, A property of 𝑑-polyhedral graphs, J. Math. Mech., 13, 1039

Klee, Victor, 1964, A combinatorial analogue of Poincaré’s duality theorem, Canadian J. Math., 16, 517, 10.4153/CJM-1964-053-0

Klee, Victor, 1964, On the number of vertices of a convex polytope, Canadian J. Math., 16, 701, 10.4153/CJM-1964-067-6

Klee, Victor, 1966, Convex polytopes and linear programming, 123

Klee, Victor, 1967, The 𝑑-step conjecture for polyhedra of dimension 𝑑<6, Acta Math., 117, 53, 10.1007/BF02395040

Kotzig, Anton, 1965, Colouring of trivalent polyhedra, Canadian J. Math., 17, 659, 10.4153/CJM-1965-065-7

A. Kotzig, 1970. Regularly connected 3-valent graphs without non-trivial cuts of cardinality3 (to appear), [p. 1138]

Kruskal, Joseph B., 1963, The number of simplices in a complex, 251

Kruskal, J. B., 1969, The number of 𝑠-dimensional faces in a complex: An analogy between the simplex and the cube, J. Combinatorial Theory, 6, 86, 10.1016/S0021-9800(69)80109-2

Larman, D. G., 1970, Paths of polytopes, Proc. London Math. Soc. (3), 20, 161, 10.1112/plms/s3-20.1.161

Larman, D. G., 1970, On the existence of certain configurations within graphs and the 1-skeletons of polytopes, Proc. London Math. Soc. (3), 20, 144, 10.1112/plms/s3-20.1.144

Larman, D. G., 1970, Gleichungen und Ungleichungen für die Gerüste von konvexen Polytopen und Zellenkomplexen, Comment. Math. Helv., 45, 199, 10.1007/BF02567326

J. Lederberg, 1966. Systematics of organic molecules, graph theory and Hamiltonian circuits, Instrumentation Research Laboratory Report, no. 1040, Stanford University, Stanford, Calif., 1966. [p. 1144]

Lederberg, Joshua, 1967, Hamilton circuits of convex trivalent polyhedra (up to 18 vertices), Amer. Math. Monthly, 74, 522, 10.2307/2314879

Lee, Ke-chun, 1958, Kombinatorische Invarianten von endlichem Komplex, Acta Math. Sinica, 8, 473

F. Levi, 1926. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade, Ber. Verh. Sachs. Akad. Wiss. Leipzig. Math.-Nat. Kl 78 (1926), 256-267. [p. 1182, p. 1183]

N. F. Lindquist, 1968. Approximation of convex bodies by finite sums of line segments, Notices Amer. Math. Soc. 15 (1968), 138. Abstract #653-207. [p. 1170]

Lindsey, John H., II, 1964, Assignment of numbers to vertices, Amer. Math. Monthly, 71, 508, 10.2307/2312587

Lindström, Bernt, 1971, On the realization of convex polytopes, Euler’s formula and Möbius functions, Aequationes Math., 6, 235, 10.1007/BF01819757

Lindström, Bernt, 1971, The optimal number of faces in cubical complexes, Ark. Mat., 8, 245, 10.1007/BF02589576

Lloyd, E. Keith, 1970, The number of 𝑑-polytopes with 𝑑+3 vertices, Mathematika, 17, 120, 10.1112/S0025579300002795

Lyusternik, L. A., 1963, Convex figures and polyhedra

Macdonald, I. G., 1971, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2), 4, 181, 10.1112/jlms/s2-4.1.181

Mader, W., 1967, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann., 174, 265, 10.1007/BF01364272

Mader, W., 1968, Homomorphiesätze für Graphen, Math. Ann., 178, 154, 10.1007/BF01350657

Malkevitch, Joseph, 1970, Properties of planar graphs with uniform vertex and face structure.

Malkevitch, Joseph, 1970, Properties of planar graphs with uniform vertex and face structure.

J. Malkevitch, 1970b. A survey of 3-valent 3-polytopes with two types of faces, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 255-256. [p. 1141]

P. Mani, 1970a. Bridges in 6-connected graphs(to appear), [p. 1135]

Mani, P., 1972, Spheres with few vertices, J. Combinatorial Theory Ser. A, 13, 346, 10.1016/0097-3165(72)90068-4

Mani, P., 1971, On angle sums and Steiner points of polyhedra, Israel J. Math., 9, 380, 10.1007/BF02771688

Mani, P., 1971, On polytopes fixed by their vertices, Acta Math. Acad. Sci. Hungar., 22, 269, 10.1007/BF01896419

Mani, P., 1971, Automorphismen von polyedrischen Graphen, Math. Ann., 192, 279, 10.1007/BF02075357

McKinney, Richard L., 1962, Positive bases for linear spaces, Trans. Amer. Math. Soc., 103, 131, 10.2307/1993744

P. McMullen, 1968a. On the combinatorial structure of convex polytopes, Ph.D. Thesis, University of Birmingham, 1968. [p. 1168, p. 1169, p. 1177, p. 1178]

P. McMullen, 1968b. Seminar on convex polytopes, Lecture Notes, Western Washington State College, Bellingham, 1968. [p. 1149, p. 1168, p. 1170, p. 1175, p. 1176, p. 1177]

McMullen, P., 1969, Linearly stable polytopes, Canadian J. Math., 21, 1427, 10.4153/CJM-1969-157-4

McMullen, P., 1971, On the upper-bound conjecture for convex polytopes, J. Combinatorial Theory Ser. B, 10, 187, 10.1016/0095-8956(71)90042-6

McMullen, P., 1971, On the upper-bound conjecture for convex polytopes, J. Combinatorial Theory Ser. B, 10, 187, 10.1016/0095-8956(71)90042-6

P. McMullen, 1970c. A lower-bound conjecture for convex polytopes(to appear), [p. 1153]

McMullen, P., 1970, On a problem of Klee concerning convex polytopes, Israel J. Math., 8, 1, 10.1007/BF02771542

McMullen, P., 1971, On zonotopes, Trans. Amer. Math. Soc., 159, 91, 10.2307/1996000

McMullen, P., 1970, Polytopes with centrally symmetric faces, Israel J. Math., 8, 194, 10.1007/BF02771315

McMullen, P., 1970, The maximum numbers of faces of a convex polytope, Mathematika, 17, 179, 10.1112/S0025579300002850

McMullen, P., 1968, Diagrams for centrally symmetric polytopes, Mathematika, 15, 123, 10.1112/S0025579300002473

P. McMullen and G. C. Shephard, 1968b. The upper bound conjecture, Lecture Notes, University of East Anglia, Norwich, 1968. [p. 1150, p. 1151, p. 1161, p. 1168]

McMullen, P., 1970, Polytopes with an axis of symmetry, Canadian J. Math., 22, 265, 10.4153/CJM-1970-035-5

P. McMullen and G. C. Shephard, 1970b. The upper bound conjecture for convex polytopes, London Math. Soc. Lecture Note Series, [p. 1168, p. 1175]

P. McMullen and G. C. Shephard, 1970c. Representations and diagrams(to appear), [p. 1166]

McMullen, P., 1971, A generalized lower-bound conjecture for simplicial polytopes, Mathematika, 18, 264, 10.1112/S0025579300005520

B. L. Meek, 1968. Some results on k-maps, Math. Gaz. 52 (1968), 33-42. [p. 1143]

Mesner, D. M., 1966, Some theorems about 𝑛-vertex connected graphs, J. Math. Mech., 16, 321, 10.1512/iumj.1967.16.16022

W. Meyer, 1969. Minkowski addition of convex sets, Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1969. [p. 1163]

H. Minkowski, 1897. Allgemeine Lehrs&#xE4;tze &#xFC;ber konvexe Polyeder, Nachr. Ges. Wiss. G&#xF6;ttingen 1897, 198-219

Cf: Ges. Abh. Vol. 2, Leipzig and Berlin, pp. 103-121, 1911

reprint, Chelsea, New York, 1967. [p. 1171]

Minkowski, Hermann, 1903, Volumen und Oberfläche, Math. Ann., 57, 447, 10.1007/BF01445180

Moon, J. W., 1963, Simple paths on polyhedra, Pacific J. Math., 13, 629, 10.2140/pjm.1963.13.629

Mordell, L. J., 1960, Rational quadrilaterals, J. London Math. Soc., 35, 277, 10.1112/jlms/s1-35.3.277

Motzkin, Theodore S., 1964, The evenness of the number of edges of a convex polyhedron, Proc. Nat. Acad. Sci. U.S.A., 52, 44, 10.1073/pnas.52.1.44

T. S. Motzkin, 1967a. The edge number of regular-homomorphic 3-polyhedra, Proc. Colloq. Convexity (Copenhagen, 1965) K&#xF8;benhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 212-213. [p. 1142]

T. S. Motzkin, 1967b. The frequencies of vertex and face valences of convex and of more general 2-tesselations, Proc. Colloq. Convexity (Copenhagen, 1965) K&#xF8;benhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 214-218. [p. 1142]

Motzkin, Theodore S., 1967, Cooperative classes of finite sets in one and more dimensions, J. Combinatorial Theory, 3, 244, 10.1016/S0021-9800(67)80072-3

A. M&#xFC;ller, 1953. Auf einem Kreis liegende Punktmengen ganzzahliger Entfernungen, Elem. Math. 8 (1953), 37-38. [p. 1181]

Müller, Hans Robert, 1967, Zur axiomatischen Begründung der Eikörperfunktionale, Monatsh. Math., 71, 338, 10.1007/BF01300640

Ore, Oystein, 1967, The four-color problem

Perles, M. A., 1970, Cell complexes, valuations, and the Euler relation, Canadian J. Math., 22, 235, 10.4153/CJM-1970-030-9

Perles, M. A., 1967, Facets and nonfacets of convex polytopes, Acta Math., 119, 113, 10.1007/BF02392080

Perles, M. A., 1967, Angle sums of convex polytopes, Math. Scand., 21, 199, 10.7146/math.scand.a-10860

G. P&#xF3;lya, 1937. Kombinatorische Anzahlbestimmungen f&#xFC;r Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937), 145-254. [p. 1175]

Rademacher, Hans, 1965, On the number of certain types of polyhedra, Illinois J. Math., 9, 361

Reay, John R., 1965, A new proof of the Bonice-Klee theorem, Proc. Amer. Math. Soc., 16, 585, 10.2307/2033883

Reay, John R., 1965, Generalizations of a theorem of Carathéodory, Mem. Amer. Math. Soc., 54, 50

Reay, J. R., 1966, Unique minimal representations with positive bases, Amer. Math. Monthly, 73, 253, 10.2307/2315336

Reay, John R., 1967, Positive bases as a tool in convexity, 255

J. R. Reay, 1968a. Projections of f-vectors of 4-polytopes, Notices Amer. Math. Soc. 15 (1968), 620. Abstract #657-24. [p. 1154]

Reay, John R., 1968, An extension of Radon’s theorem, Illinois J. Math., 12, 184

Remez, E. Ja., 1967, On a theorem on convex polyhedra in connection with the question of finding the totality of solutions of systems of linear inequalities, Ukrain. Mat. \v{Z}., 19, 74

Reidemeister, Kurt, 1968, Zur Färbung von Simplizialkomplexen der Sphäre, Nachr. Akad. Wiss. G\"{o}ttingen Math.-Phys. Kl. II, 1968, 171

Ringel, Gerhard, 1955, Teilungen der Ebene durch Geraden oder topologische Geraden, Math. Z., 64, 79, 10.1007/BF01166556

Ringel, G., 1957, Über Geraden in allgemeiner Lage, Elem. Math., 12, 75

Riordan, John, 1966, The number of faces of simplicial polytopes, J. Combinatorial Theory, 1, 82, 10.1016/S0021-9800(66)80006-6

R. R. Rottenberg, 1969. On finite sets of points in P, Technion Preprint Series, no. MT-31, Technion, Haifa, 1969. [p. 1171]

D. A. Rowland, 1968. An extension of Eberhard’s theorem, M.Sci. Thesis, University of Washington, Seattle, Wash., 1968. [p. 1142]

Sachs, Horst, 1968, Ein von Kozyrev und Grinberg angegebener nicht-hamiltonscher kubischer planarer Graph, 127

Sallee, G. T., 1966, A valuation property of Steiner points, Mathematika, 13, 76, 10.1112/S0025579300004241

Sallee, G. T., 1967, Incidence graphs of convex polytopes, J. Combinatorial Theory, 2, 466, 10.1016/S0021-9800(67)80056-5

Sallee, G. T., 1968, Polytopes, valuations, and the Euler relation, Canadian J. Math., 20, 1412, 10.4153/CJM-1968-142-0

Sallee, G. T., 1971, A non-continuous “Steiner point”, Israel J. Math., 10, 1, 10.1007/BF02771514

G. Sansone, 1928. Sui prismi e le piramidi regolari razionali, Period. Mat. (4) 8 (1928), 106-116. [p. 1181]

Santaló, L. A., 1946, On the convex bodies of constant width in 𝐸_{𝑛}, Portugal. Math., 5, 195

Scherk, Peter, 1969, Über eine Klasse von Polyederfunktionalen, Comment. Math. Helv., 44, 191, 10.1007/BF02564521

V. Schlegel, 1891. Ueber die verschiedenen Formen von Gruppen, welche r beliebige Punkte im n-dimensionalen Raum bilden konnentArch. Math. Phys. (2) 10 (1891), 283-299. [p. 1173]

V. Schlegel, 1893. Ueber Projectionen der mehrdimensionalen regelm&#xE4;ssigen K&#xF6;rpert Jber. Deutsch. Math. Verein. 2 (1893), 66-69. [p. 1137]

K.-A. Schmitt, 1967. Hilbert spaces containing sub spaces consisting of symmetry classes of convex bodies, Proc. Colloq. Convexity (Copenhagen, 1965) K&#xF8;benhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 278-280. [p. 1163]

Schmitt, Karl-Adolf, 1968, Kennzeichnung des Steinerpunktes konvexer Körper, Math. Z., 105, 387, 10.1007/BF01110300

Schneider, Rolf, 1967, Zur einem Problem von Shephard über die Projektionen konvexer Körper, Math. Z., 101, 71, 10.1007/BF01135693

Schneider, Rolf, 1967, Über die Durchschnitte translationsgleicher konvexer Körper und eine Klasse konvexer Polyeder, Abh. Math. Sem. Univ. Hamburg, 30, 118, 10.1007/BF02993995

Schneider, Rolf, 1971, On Steiner points of convex bodies, Israel J. Math., 9, 241, 10.1007/BF02771589

F. Schoblik, 1930. Zum Problem des Kartenf&#xE4;rbens, Jber. Deutsch. Math. Verein. 39 (1930), 51-52. [p. 1143]

P. H. Schoute, 1905. Mehrdimensionale Geometrie. Zweiter Teil: Die Polytope, Teubner, Leipzig, 1905. [p. 1137, p. 1173]

Sheng, T. K., 1966, Rational polygons, J. Austral. Math. Soc., 6, 452, 10.1017/S1446788700004912

Shephard, G. C., 1964, Approximation problems for convex polyhedra, Mathematika, 11, 9, 10.1112/S0025579300003430

Shephard, G. C., 1966, The Steiner point of a convex polytope, Canadian J. Math., 18, 1294, 10.4153/CJM-1966-128-4

Shephard, G. C., 1966, A pre-Hilbert space consisting of classes of convex sets, Israel J. Math., 4, 1, 10.1007/BF02760065

Shephard, G. C., 1967, An elementary proof of Gram’s theorem for convex polytopes, Canadian J. Math., 19, 1214, 10.4153/CJM-1967-110-7

Shephard, G. C., 1967, Polytopes with centrally symmetric faces, Canadian J. Math., 19, 1206, 10.4153/CJM-1967-109-3

Shephard, G. C., 1968, Angle deficiencies of convex polytopes, J. London Math. Soc., 43, 325, 10.1112/jlms/s1-43.1.325

Shephard, G. C., 1968, A uniqueness theorem for the Steiner point of a convex region, J. London Math. Soc., 43, 439, 10.1112/jlms/s1-43.1.439

Shephard, G. C., 1968, Euler-type relations for convex polytopes, Proc. London Math. Soc. (3), 18, 597, 10.1112/plms/s3-18.4.597

Shephard, G. C., 1968, A theorem on cyclic polytopes, Israel J. Math., 6, 368, 10.1007/BF02771216

Shephard, G. C., 1968, The mean width of a convex polytope, J. London Math. Soc., 43, 207, 10.1112/jlms/s1-43.1.207

Shephard, G. C., 1971, Diagrams for positive bases, J. London Math. Soc. (2), 4, 165, 10.1112/jlms/s2-4.1.165

Shephard, G. C., 1971, Spherical complexes and radial projections of polytopes, Israel J. Math., 9, 257, 10.1007/BF02771591

Shephard, G. C., 1965, Metrics for sets of convex bodies, Mathematika, 12, 73, 10.1112/S0025579300005179

D. M. Y. Sommerville, 1927. The relations connecting the angle-sums and volume of a polytope in space of n dimensions, Proc. Roy. Soc. London Ser. A115 (1927), 103-119. [p. 1158]

Stein, S. K., 1951, Convex maps, Proc. Amer. Math. Soc., 2, 464, 10.2307/2031777

J. Steiner, 1830. Probl&#xE8;me de situation, Ann. Math. Gergonne 19 (1830), 36

Cf : Ges. Werke. Vol. 1, 1881, p. 227. [p. 1173]

J. Steiner, 1840. Von dem Kr&#xFC;mmungsschwerpunkte ebener Curven, J. Reine Angew. Math. 21 (1840), 33-63, 101-122

Cf: Ges. Werke. Vol. 2, Reiner, Berlin, 1882, pp. 99-159. [p. 1162]

E. Steinitz, 1906. &#xDC;ber die Eulersche Polyederrelationen, Arch. Math. Phys. (3) 11 (1906), 86-88. [p. 1148]

E. Steinitz, 1909. &#xDC;ber diejenigen konvexen Polyder mit n Grenzfl&#xE4;chen, welche nicht durch n-4 ebene Schnitte aus einen Tetraeder abgeleitet werden k&#xF6;nnen, Arch. Math. Phys.

(3) 14 (1909), 1-48. [p. 1171]

E. Steinitz, 1913. Bedingt konvergente Reihen und konvexe Systeme, J. Reine Angew. Math. 143 (1913), 128-175; 144 (1914), 1-40; 146 (1916), 1-52. [p. 1171]

E. Steinitz, 1922. Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. 3 (1922), Geometrie part 3AB12, 1-139. [p. 1136, p. 1137]

E. Steinitz and H. Rademacher, 1934. Vorlesungen &#xFC;ber die Theorie der Polyeder, Springer, Berlin, 1934. [p. 1137]

Stoer, Josef, 1970, Convexity and optimization in finite dimensions. I, 10.1007/978-3-642-46216-0

Stojaković, Mirko, 1959, Über die Konstruktion der ebenen Graphen, Univ. Beograd. Godi\v{s}njak Filozof. Fak. Novom Sadu, 4, 375

Supnick, Fred, 1951, On the perspective deformation of polyhedra. II. Solution of the convexity problem, Ann. of Math. (2), 53, 551, 10.2307/1969572

P. G. Tait, 1880. Remarks on the colouring of maps, Proc. Roy. Soc. Edinburgh 10 (1880), 501-503. [p. 1143]

Tutte, W. T., 1946, On Hamiltonian circuits, J. London Math. Soc., 21, 98, 10.1112/jlms/s1-21.2.98

Tutte, W. T., 1956, A theorem on planar graphs, Trans. Amer. Math. Soc., 82, 99, 10.2307/1992980

Tutte, W. T., 1960, Convex representations of graphs, Proc. London Math. Soc. (3), 10, 304, 10.1112/plms/s3-10.1.304

Tutte, W. T., 1960, A non-Hamiltonian planar graph, Acta Math. Acad. Sci. Hungar., 11, 371, 10.1007/BF02020951

Tutte, W. T., 1961, A theory of 3-connected graphs, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math., 23, 441, 10.1016/S1385-7258(61)50045-5

Tutte, W. T., 1963, How to draw a graph, Proc. London Math. Soc. (3), 13, 743, 10.1112/plms/s3-13.1.743

Tutte, W. T., 1968, On the enumeration of planar maps, Bull. Amer. Math. Soc., 74, 64, 10.1090/S0002-9904-1968-11877-4

Ulam, S. M., 1960, A collection of mathematical problems

M. Vaccaro, 1954. Sulla caratteristica dei complessi simpliciali n-dimensionali , Proc. Internat. Congress Math. (Amsterdam, 1954) vol. 2, pp. 261-262. [p. 1149]

Vaccaro, Michelangelo, 1956, Sulla caratteristica dei complessi simpliciali 𝜒-omogenei, Ann. Mat. Pura Appl. (4), 41, 1, 10.1007/BF02411657

Volland, Walter, 1957, Ein Fortsetzungssatz für additive Eipolyederfunktionale im euklidischen Raum, Arch. Math. (Basel), 8, 144, 10.1007/BF01900440

K. Wagner, 1936a. Bemerkungen zum Vierfarbenproblem, Jber. Deutsch. Math. Verein. 46 (1936), 26-32. [p. 1138]

K. Wagner, 1936b. Ein Satz &#xFC;ber Komplexe, Jber. Deutsch. Math. Verein. 46 (1936), 21-22. [p. 1143]

Walkup, David W., 1970, The lower bound conjecture for 3- and 4-manifolds, Acta Math., 125, 75, 10.1007/BF02392331

Walther, H., 1965, Ein kubischer, planarer, zyklisch fünffach zusammenhängender Graph, der keinen Hamiltonkreis besitzt, Wiss. Z. Tech. Hochsch. Ilmenau, 11, 163

H. Walther, 1966. &#xDC;ber das Problem der Existenz von Hamiltonkreisen in planaren regul&#xE4;ren Graphen der Grade3, 4, und5, Thesis, Techn. Hochschule Ilmenau, 1966. [p. 1144]

Walther, H., 1967, Über die Anzahl der Knotenpunkte eines längsten Kreises in planaren, kubischen, dreifach knotenzusammenhängenden Graphen, Studia Sci. Math. Hungar., 2, 391

H. Walther, 1968. On the problem of the existence of Hamilton-lines in planar regular graphs, Proc. Colloq, Theory of Graphs (Tihany, 1966) Academic Press, New York; Akad. Kiad&#xF3;, Budapest, 1968, pp. 341-343. [p. 1144]

Walther, Hansjoachim, 1969, Über das Problem der Existenz von Hamiltonkreisen in planaren, regulären Graphen, Math. Nachr., 39, 277, 10.1002/mana.19690390407

Walther, Hansjoachim, 1969, Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen, J. Combinatorial Theory, 6, 1, 10.1016/S0021-9800(69)80098-0

Watkins, Mark E., 1968, On the existence of certain disjoint arcs in graphs, Duke Math. J., 35, 231

Watkins, M. E., 1967, Cycles and connectivity in graphs, Canadian J. Math., 19, 1319, 10.4153/CJM-1967-121-2

Whitney, Hassler, 1932, Non-separable and planar graphs, Trans. Amer. Math. Soc., 34, 339, 10.2307/1989545

Woo, Lin, 1969, An algorithm for straight-line representation of simple planar graphs, J. Franklin Inst., 287, 197, 10.1016/0016-0032(69)90097-0

Wu Wen-tsün, 1965, A theory of imbedding, immersion, and isotopy of polytopes in a euclidean space

Zaks, Joseph, 1969, On minimal complexes, Pacific J. Math., 28, 721, 10.2140/pjm.1969.28.721

Zaks, Joseph, 1969, On a minimality property of complexes, Proc. Amer. Math. Soc., 20, 439, 10.2307/2035673

J. Zaks, 1970a. The analogue of Eberhard’s theorem for 4-valent graphs on the torus(to appear).[p. 1140]

Zaks, Joseph, 1971, On realizing symmetric 3-polytopes, Israel J. Math., 10, 244, 10.1007/BF02771576

Zaks, Joseph, 1971, The analogue of Eberhard’s theorem for 4-valent graphs on the torus, Israel J. Math., 9, 299, 10.1007/BF02771680