Các đường đi polysynaptic từ nhân tiền đình đến nhân mào bên của chuột: nền tảng cho đầu vào tiền đình đến các tế bào hướng đầu

Springer Science and Business Media LLC - Tập 161 - Trang 47-61 - 2004
J. E. Brown1,2,3, J. P. Card1, B. J. Yates1,4
1Department of Neuroscience, University of Pittsburgh, Pittsburgh, USA
2Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, USA
3Department of Psychological and Brain Sciences, Dartmouth College, Hanover, USA
4Department of Otolaryngology, Eye and Ear Institute, Room 106, University of Pittsburgh, Pittsburgh, USA

Tóm tắt

Hoạt động của một số nơron trong nhân mào bên (LMN) của chuột tương ứng với hướng đầu hiện tại của động vật. Các tế bào HD đã được nghiên cứu rất kỹ lưỡng, nhưng mạch nối chịu trách nhiệm cho việc tạo ra và duy trì tín hiệu HD vẫn chưa được thiết lập. Nghiên cứu hiện tại đã kiểm tra giả thuyết rằng một con đường polysynaptic kết nối các nhân tiền đình với LMN thông qua một hoặc nhiều nhân trung gian. Mạch nối này có thể cung cấp một nền tảng cho việc tích hợp thông tin cảm giác cần thiết cho hoạt động của tế bào HD. Giả thuyết này dựa trên sự chứng minh trước đó rằng phẫu thuật tai trong làm mất lựa chọn HD ở các nơron thalamic. Truy vết transneuronal bằng virus giả dại (PRV) đã được sử dụng để kiểm tra giả thuyết này. Chúng tôi đã tiêm các loại tái tổ hợp của PRV vào LMN và các nhân xung quanh ở chuột đực trưởng thành và xác định các mẫu nhiễm retrograde transneuronal tại các khoảng thời gian sinh tồn 60 và 72 giờ. Các nơron tiền đình vùng giữa (MVN) chỉ được quan sát thấy tại khoảng thời gian sau tiêm lâu nhất ở những con vật mà vị trí tiêm chủ yếu được định vị trong LMN. Nhiễm mạnh mẽ của nhân tảng sau (DTN) và nhân trước ngôn ngữ hạ thiệt (PH) trong các trường hợp này, nhưng không trong các trường hợp đối chứng, tại cả hai khoảng thời gian sinh tồn đã xác định các nhân này như là các truyền dẫn tiềm năng của thông tin tiền đình đến LMN. Những dữ liệu này phù hợp với kết luận rằng thông tin tiền đình góp phần vào hoạt động của tế bào HD ở LMN được truyền dẫn đến nhóm tế bào hạ đồi phía sau này thông qua một mạch não giữa polysynaptic.

Từ khóa

#nhân mào bên #hướng đầu #đường dẫn polysynaptic #tế bào HD #virus giả dại

Tài liệu tham khảo

Allen GV, Hopkins DA (1988) Mammillary body in the rat: a cytoarchitectonic, Golgi, and ultrastructural study. J Comp Neurol 275:39–64 Allen GV, Hopkins DA (1989) Mammillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex and midbrain tegmentum. J Comp Neurol 286:311–336 Alonso A, Kohler C (1984) A study of reciprocal connections between the septum and entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. J Comp Neurol 225:327–343 Baker R (1977) The nucleus prepositus hypoglossi. In: Brooks BA, Bajandas FJ (eds) Eye movements. Plenum, New York, pp 145–178 Balaban CD, McGee DM, Zhou J, Scudder CA (2002) Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation. J Neurophysiol 88:3175–3193 Bassett JP, Taube JS (2001) Neural correlates for angular head velocity in the rat dorsal tegmental nucleus. J Neurosci 21:5740–5751 Beitz AJ, Clements HR, Mullett MA, Ecklund LJ (1986) Differential origin of brainstem serotonergic projections to the midbrain periaqueductal gray and superior colliculus of the rat. J Comp Neurol 250:498–509 Belknap DB, McCrea RA (1988) Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. J Comp Neurol 268:12–38 Billig I, Foris JM, Enquist LW, Card JP, Yates BJ (2000) Definition of neuronal circuitry controlling the activity of phrenic and abdominal motoneurons in the ferret using recombinant strains of pseudorabies virus. J Neurosci 20:7446–7454 Blair HT, Cho J, Sharp PE (1998) Role of the lateral mammillary nucleus in the rat head direction circuit: a combined single unit recording and lesion study. Neuron 21:1387–1397 Blair HT, Cho J, Sharp PE (1999) The anterior thalamic head-direction signal is abolished by bilateral but not unilateral lesions of the lateral mammillary nucleus. J Neurosci 19:6673–3383 Brodal A (1983) The perihypoglossal nuclei in the macaque monkey and the chimpanzee. J Comp Neurol 218:257–269 Brown JE, Yates BJ, Taube JS (2002) Does the vestibular system contribute to head direction cell activity in the rat? Physiol Behav 77:743–748 Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57:1383–1409 Card JP (2001) Pseudorabies virus neuroinvasiveness: a window into the functional organization of the brain. Adv Virus Res 56:39–71 Card JP, Enquist LW, Moore RY (1999) Neuroinvasiveness of pseudorabies virus injected intracerebrally is dependent on viral concentration and terminal field density. J Comp Neurol 407:438–452 Card JP, Rinaman L, Schwaber JS, Miselis RR, Whealy ME, Robbins AK, Enquist LW (1990) Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system. J Neurosci 10:1974–1994 Chen LL, Lin LH, Barnes CA, McNaughton BL (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101:24–34 Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25:271–284 Ennis M, Aston-Jones G (1989) Potent inhibitory input to locus coeruleus from the nucleus prepositus hypoglossi. Brain Res Bull 22:793–803 Gonzalo-Ruiz A, Sanz-Anquela JM, Spencer RF (1993) Immunohistochemical localization of GABA in the mammillary complex of the rat. Neuroscience 54:143–156 Gonzalo-Ruiz A, Morte L, Flecha JM, Sanz JM (1999) Neurotransmitter characteristic of neurons projecting to the supramammillary nucleus of the rat. Anat Embryol 200:377–392 Goto Y, Swanson LW, Canteras NS (2001) Connections of the nucleus incertus. J Comp Neurol 438:86–122 Groenewegen HJ, Van Dijk CA (1984) Efferent connections of the dorsal tegmental region in the rat, studied by means of anterograde transport of the lectin Phaseolus vulgaris-leucoagglutinin (PHA-L). Brain Res 304:367–371 Hayakawa T, Ito H, Zyo K (1993) Neuroanatomical study of afferent projections to the supramammillary nucleus of the rat. Anat Embryol (Berl) 188:139–148 Hayakawa T, Ito H, Zyo K (1994) Fine structure of the supramammillary nucleus of the rat: analysis of the ultrastructural character of dopaminergic neurons. J Comp Neurol 346:127–136 Hayakawa T, Zyo K (1985) Afferent connections of Gudden’s tegmental nuclei in the rabbit. J Comp Neurol 235:169–181 Hayakawa T, Zyo K (1990) Fine structure of the lateral mammillary projection of the dorsal tegmental nucleus of Gudden in the rat. J Comp Neurol 298:224–236 Hayakawa T, Zyo K (1991) Quantitative and ultrastructural study of ascending projections to the medial mammillary nucleus in the rat. Anat Embryol (Berl) 184:611–622 Hayakawa T, Zyo K (1992) Ultrastructural study of ascending projections to the lateral mammillary nucleus of the rat. Anat Embryol (Berl) 185:547–557 Henn V, Young LR, Finley C (1974) Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Res 71:144–149 Hsu SM, Raine L, Fanger H (1981) The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase techniques. Am J Clin Pathol 75:816–821 Iwasaki H, Kani K, Maeda T (1999) Neural connections of the pontine reticular formation, which connects reciprocally with the nucleus prepositus hypoglossi in the rat. Neuroscience 93:195–208 Jasmin L, Burkey AR, Card JP, Basbaum A (1997) Transneuronal labeling of a nociceptive pathway, the spinal-(trigemino-)parabrachio-amygdalaoid, in the rat. J Neurosci 17:3751–3765 Kim SY, Frohardt RJ, Taube JS (2003) Head direction cells shift reference frames in the vertical plane. Program No. 519.19, 2003 Abstract viewer/itinerary planner. Society for Neuroscience, Washington, DC Korp BG, Blanks RHI, Torigoe Y (1989) Projections of the nucleus of the optic tract to the nucleus reticularis tegmenti pontis and the prepositus hypoglossi nucleus in the pigmented rat as demonstrated by anterograde and retrograde transport methods. Vis Neurosci 2:275–286 Lannou J, Cazin L, Precht W, Le Taillanter M (1984) Responses of prepositus hypoglossi neurons to optokinetic and vestibular stimulations in the rat. Brain Res 301:39–45 Liu R, Chang L, Wickern G (1984) The dorsal tegmental nucleus: an axoplasmic transport study. Brains Res 310:123–132 Luppi PH, Aston-Jones G, Akaoka H, Chouvet G, Jouvet M (1995) Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin b subunit and phaseolus vulgaris leucoagglutinin. Neuroscience 65:119–160 Marchand ER, Riley JN, Moore RY (1980) Interpeduncular nucleus afferents in the rat. Brain Res 193:339–352 Marchand JE, Hagino (1983) Afferents to the periaqueductal gray in the rat. A horseradish peroxidase study. Neuroscience 9:95–106 Marchand CF, Schwab ME (1986) Binding, uptake and retrograde axonal transport of herpes virus suis in sympathetic neurons. Brain Res 383:262–270 Matesz C, Bacskai T, Nagy E, Halasi G, Kulik A (2002) Efferent connections of the vestibular nuclei in the rat: a neuromorphological study using PHA-L. Brain Res Bull 57:313–315 McCrea RA (1988) Neuroanatomy of the oculomotor system. The nucleus prepositus. Rev Oculomot Res 2:203–223. McCrea RA, Baker R (1985) Anatomical connections of the nucleus prepositus in the cat. J Comp Neurol 237:377–407 McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083 Mizumori SJY, Williams JD (1993) Directionally selective mnemonic properties of neurons in the lateral dorsal thalamic nucleus of rats. J Neurosci 13:4015–4028 Muller RU, Ranck JB, Taube JS (1996) Head direction cells: properties and functional significance. Curr Opin Neurobiol 6:196–206 Olucha-Bordonau FE, Teruel V, Barcia-Gonzalez J, Ruiz-Torner A, Valverde-Navarro AA, Martinez-Soriano F (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464:62–97 Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego Pickard GE, Smeraski CA, Tomlinson CC, Banfield BW, Kaufman J, Wilcox CL, Enquist LW, Sollars PJ (2002) Intravitreal injection of the attenuated pseudorabies virus PRV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci 22:2701–2710 Risold PY, Swanson LW (1996) Structural evidence for functional domains in the rat hippocampus. Science 272:1484–1486 Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Brain Res Rev 24:91–113 Ruggiero DA, Giuliano R, Anwar M, Stornetta R, Reis DJ (1990) Anatomical substrates of cholinergic-autonomic regulation in the rat. J Comp Neurol 292:1–53 Schor RH, Steinbacher BC, Yates BJ (1998). Horizontal linear and angular responses of neurons in the medial vestibular nucleus of the decerebrate cat. J Vestib Res 8:107–116 Sharp PE, Blair HT, Cho J (2001a) The anatomical and computational basis of the rat head-direction signal. Trends Neurosci 24:289–294 Sharp PE, Tinkelman A, Cho J (2001b) Angular velocity and head direction signals recorded from the dorsal tegmental nucleus of Gudden in the rat: implications for path integration in the head direction cell circuit. Behav Neurosci 115:571–588 Shibata H (1987) Ascending projections to the mammillary nuclei in the rat: a study using retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. J Comp Neurol 264:205–215 Shibata H, Suzuki T, Matsushita M (1986) Afferent projections to the interpeduncular nucleus in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. J Comp Neurol 248:272–284 Stackman RW, Taube JS (1997) Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input. J Neurosci 17:4349–4358 Stackman RW, Taube JS (1998) Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J Neurosci 18:9020–9037 Stackman RW, Tullman ML, Taube JS (2000) Maintenance of rat head direction cell firing during locomotion in the vertical plane. J Neurophysiol 83:393–405 Swanson LW (1998) Brain maps: structure of the rat brain. Elsevier, Amsterdam Takeuchi Y, Allen GV, Hopkins DA (1985) Transnuclear transport and axon collateral projections of the mamillary nuclei in the rat. Brain Res Bull 14:453–468 Taube JS (1995) Head-direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci 15:70–86 Taube JS (1998) Head direction cells and the neurophysiological basis for a sense of direction. Prog Neurobiol 55:225–256 Taube JS, Muller RU, Ranck JB (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10:420–435 Vahlne A, Svennerholm B, Sandber M, Hamberger A, Lycke E (1980) Differences in attachment between herpes simplex type 1 and type 2 viruses to neurons and glial cells. Infect Immun 28:675–680 Watson RE, Wiegand ST, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7:155–159 Weiner SI (1993) Spatial and behavioral correlates of striatal neurons in rats performing a self-initiated navigational task. J Neurosci 13:3802–3817 Wirtshafter D, Stratford TR (1993) Evidence for GABAergic projections from the tegmental nuclei of Gudden to the mammillary body in the rat. Brain Res 630:188–194 Zelman FP, Behbehani MM, Beckstead RM (1984) Ascending and descending projections from nucleus reticularis magnocellularis and nucleus reticularis gigantocellularis: an autoradiographic and horseradish peroxidase study in the rat. Brain Res 292:207–220