Polymyxin B-immobilized fiber column hemoperfusion mainly helps to constrict peripheral blood vessels in treatment for septic shock
Tóm tắt
Polymyxin B-immobilized fiber column hemoperfusion (PMX) has been reported to be effective for patients with septic shock. It remains unclear, however, how the efficacy of PMX varies according to the characteristics and underlying conditions of the patients treated. The objective of the present study was to clarify the factors that result in clinical efficacy of PMX treatment. We retrospectively investigated 78 consecutive patients with severe sepsis or septic shock who underwent PMX treatment. We reviewed the demographic data, routine biochemistry, microbiological data, infection focus, Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score, change in mean arterial pressure (MAP), inotropic score, vasopressor dependency index, plasma levels of endotoxin and lactate, PaO2/FIO2 ratio, and survival time. We also divided the patients into two groups for comparison, namely, those whose inotropic scores improved after PMX treatment (improvement group) and those whose inotropic scores did not improve (non-improvement group). The inotropic score and the vasopressor dependency index significantly decreased from 18.1 to 9.9 (p < 0.05) and from 0.27 to 0.14 (p < 0.05), respectively, after PMX treatment in the overall study population, while no significant change in the PaO2/FIO2 ratio was observed (p = 0.96). The inotropic score at pre-PMX treatment was significantly higher in the improvement group than in the non-improvement group (p < 0.01). The improvement of the PaO2/FIO2 ratio after PMX treatment was significant in the improvement group (p < 0.05). The improvement group’s inotropic score was higher, because of peripheral blood vessels dilatation and requirement for more catecholamines. Therefore, our study suggests that PMX treatment is particularly useful for improving hemodynamics in septic shock patients with excessively dilated peripheral blood vessels.
Tài liệu tham khảo
Novelli G, Ferretti G, Poli L, Pretagostini R, Ruberto F, Perrella SM, et al. Clinical results of treatment of postsurgical endotoxin-mediated sepsis with polymyxin-B direct hemoperusion. Transplant Proc. 2010;42:1021–4.
Shoji H. Extracorporeal endotoxin removal for the treatment of sepsis: endotoxin adsorption cartridge (toraymyxin). Ther Apher Dial. 2003;7:108–14.
Davies B, Cohen J. Endotoxin removal devices for the treatment of sepsis and septic shock. Lancet Infect Dis. 2011;11:65–71.
Kohro S, Imaizumi H, Yamakage M, Masuda Y, Namiki A, Asai Y, et al. Anandamide absorption by direct hemoperfusion with polymixin B-immobilized fiber improves the prognosis and organ failure assessment score in patients with sepsis. J Anesth. 2006;20:11–6.
Ono S, Kimura A, Hiraki S, Takahata R, Tsujimoto H, Kinoshita M, et al. Removal of increased circulating CD4 + CD25 + Foxp3 + regulatory T cells in patients with septic shock using hemoperfusion with polymyxin B-immobilized fibers. Surgery. 2013;153:262–71.
Ueno T, Ikeda T, Ikeda K, Taniuchi H, Suda S, Yeung MY, et al. HMGB-1 as a useful prognostic biomarker in sepsis-induced organ failure in patients undergoing PMX-DHP. J Surg Res. 2011;177:183–90.
Tani T, Hanasawa K, Kodama M, Imaizumi H, Yonekawa M, Saito M, et al. Correlation between plasma endotoxin, plasma cytokines, and plasminogen activator inhibitor-1 activities in septic patients. World J Surg. 2001;25:660–8.
Nakamura T, Kawagoe Y, Matsuda T, Shoji H, Ueda Y, Tamura N, et al. Effect of polymyxin B-immobilized fiber on blood metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in acute respiratory distress syndrome patients. Blood Purif. 2004;22:256–60.
Ikeda T, Ikeda K, Nagura M, Taniuchi H, Matsushita M, Kiuchi S, et al. Clinical evaluation of PMX-DHP for hypercytokinemia caused by septic multiple organ failure. Ther Apher Dial. 2004;8:293–8.
Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009;301:2445–52.
Vincent JL, Laterre PF, Cohen J, Burchandi H, Bruining H, Lerma FA, et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock. 2005;23:400–5.
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.
Mitaka C, Tsuchida N, Kawada K, Nakajima Y, Imai T, Sasaki S. A longer duration of polymyxin B-immobilized fiber column hemoperfusion improves pulmonary oxygenation in patients with septic shock. Shock. 2009;32:478–83.
Kambayashi J, Yokota M, Sakon M, Shiba E, Kawasaki T, Mori T, et al. A novel endotoxin-specific assay by turbidimetry with Limulus amoebocyte lysate containing β-glucan. J Biochem Biophys Methods. 1991;22:93–100.
Zuppa AF, Nadkarni V, Davis L, Adamson PC, Helfaer MA, Elliott MR, et al. The effect of a thyroid hormone infusion on vasopressor support in critically ill children with cessation of neurologic function. Crit Care Med. 2004;32:2318–22.
De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.
Wang Y, Liu Y, Ito Y, Hashiguchi T, Kitajima I, Yamakuchi M, et al. Simultaneous measurement of anandamide and 2-arachidonoylglycerol by polymyxin B-selective adsorption and subsequent high-performance liquid chromatography analysis: increase in endogenous cannabinoids in the sera of patients with endotoxic shock. Anal Biochem. 2001;294:73–82.
Kase Y, Obata T, Okamoto Y, Iwai K, Saito K, Yokoyama K, et al. Removal of 2-arachidonylglyceral by direct hemoperfusion therapy with polymyxin B immobilized fibers benefits patients with septic shock. Ther Apher Dial. 2008;12:374–80.
Nakamura T, Kawagoe Y, Matsuda T, Koide H. Effect of polymyxin B-immobilized fiber on bone resorption in patients with sepsis. Intensive Care Med. 2004;30:1838–41.
Julou-Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR, Stoclet JC. Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol. 1990;259(4 Pt 2):H1038–43.
Szabó C. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz. 1995;3:2–32.
Goodrum KJ, McCormick LL, Schneider B. Group B streptococcus-induced Nitric Oxide production in murine macrophages is CR3(CD11b/CD18) dependent. Infect Immun. 1994;62:3102–7.
Kushi H, Miki T, Okamoto K, Nakahara J, Saito T, Tanjoh K. Early hemoperfusion with an immobilized polymyxin B fiber column eliminates humoral mediators and improves pulmonary oxygenation. Critical Care. 2005;9:R653–61.
Sato K, Maekawa H, Sakurada M, Orita H, Komatsu Y. Direct hemoperfusion with polymyxin B immobilized fiber for abdominal sepsis in Europe. Surg Today. 2011;41:754–60.
Ronco C, Klein DJ. Polymyxin B hemoperfusion: a mechanistic perspective. Crit Care. 2014;18:309.