Polymorphic transitions in single crystals: A new molecular dynamics method

Journal of Applied Physics - Tập 52 Số 12 - Trang 7182-7190 - 1981
Michele Parrinello1, A. Rahman2
1University of Trieste, Trieste, Italy
2Argonne National Laboratory, Argonne, Illinois, 60439

Tóm tắt

A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress-strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress-strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock.

Từ khóa


Tài liệu tham khảo

1976, Phys. Rev. B, 14, 1758, 10.1103/PhysRevB.14.1758

1980, Phys. Rev. Lett., 45, 1196, 10.1103/PhysRevLett.45.1196

1973, J. Appl. Phys., 44, 3825, 10.1063/1.1662857

1973, J. Appl. Phys., 44, 3833, 10.1063/1.1662858

1980, Phys. Rev. Lett., 44, 277, 10.1103/PhysRevLett.44.277

1980, J. Chem. Phys., 72, 2384, 10.1063/1.439486

1980, Phys. Rev. A, 22, 1690, 10.1103/PhysRevA.22.1690