Polymerization with Borane Chemistry. Tributylborane/p-Quinone System as a New Method of Reversible-Deactivation Radical Copolymerization for Styrene and Methyl Acrylate

Macromolecular Research - Tập 28 - Trang 851-860 - 2020
Dmitrii Ludin1, Yulia Voitovich2,3, Evgenia Salomatina3, Yulia Kuznetsova3, Ivan Grishin3, Igor Fedushkin1,4, Sergey Zaitsev3
1Research Educational Center “Chemistry of Molecules and Materials”, Minin University, Nizhny Novgorod, Russian Federation
2Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
3Chemistry department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
4G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Science (RAS), Nizhny Novgorod, Russian Federation

Tóm tắt

We report a reversible-deactivation radical copolymerization of styrene and methyl acrylate in the presence of tributylborane and different p-quinones. p-Quinones, such as 1,4-naphthoquinone, 2,3-dimethyl-1,4-benzoquinone, 2,5-ditert-1,4-butylbenzoquinone, and duroquinone, with addition of a catalytic amount of tributylborane, allow for the control over styrene/methyl acrylate copolymerization. The process proceeds in a controlled manner via a reversible homolytic dissociation of the active macromolecules with terminal aryloxyboron-groups. The rate of styrene/methyl acrylate copolymerization depends on the inhibition constants of quinones. The molecular weight and molecular weight distribution of copolymers are directly dependent on the inhibitory abilities of the quinones. 1,4-Naphthoquinone and 2,3-dimethyl-1,4-benzoquinone act as the most effective mediators of chain propagation. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that the macromolecules contained internal fragments of p-quinone. Also, of the terminal aryloxyboron-groups were detected in the mass spectra. On realization of the “living” mechanism of copolymerization, the structure of copolymers obtained at high conversions can be considered as similar to the gradient structure. Stereo-regularity of the copolymers differed from the conventional radical copolymerization. The glass-transition temperature (Tg) of the gradient copolymer differed from Tg of the random compositional heterogeneous copolymer. The effect of the macromolecular structure on the mechanical properties of the copolymers was studied.

Tài liệu tham khảo

G. A. Kolesnikov and L. S. Fedorova, Bull. Acad. Sci. USSR, Div. Chem. Sci., 2, 251 (1957). J. Furukawa, T. Tsuruta, and S. Inoue, J. Polym. Sci. Part A: Polym. Chem., 26, 234 (1957). C. Ollivier and P. Renaud, Chem. Rev., 33, 3415 (2001). T. C. M. Chung, W. Janvikul, and H. L. Lu, J. Am. Chem. Soc., 118, 705 (1996). T. C. Chung and W. Janvikul, J. Organomet. Chem., 581, 176 (1999). B. Lu and T. C. Chung, Macromolecues, 31, 5943 (1998). T. C. Chung, D. Rubright, and G. L. Jiang, Macromolecules, 26, 3467 (1993). W. Lin, H. Niu, T. C. M. Chung, and J.-Y. Dong, J. Polym. Sci. Part A: Polym. Chem., 48, 3534 (2010). M. F. Sonnenschein, S. P. Webb, P. E. Kastl, D. J. Arriola, B. M. Wendt, D. R. Harrington, and N. G. Rondan, Macromolecules, 37, 7974 (2004). C. Zhao, R. Sugimoto, and Y. Naruoka, Chinese J. Polym. Sci., 36, 592 (2018). M. Yu. Zaremskii, V. V. Odintsova, A. V. Plutalova, M. E. Gurskii, and Yu. N. Bubnov, Polym. Sci. Ser. B, 60, 162 (2018). M. Yu. Zaremski, V. V. Odintsova, A. V. Bol’shakova, E. S. Garina, M. E. Gurskii, and Yu. N. Bubnov, Polym. Sci. Ser. B, 60, 436 (2018). C. Lv, Y. Du, and X. Pan, J. Polym. Sci., 58, 14 (2020). C. Lv, C. He, and X. Pan, Angew. Chem. Int. Ed., 57, 9430 (2018). O. R. Wilson and A. J. D. Mageneau, ACS Macro Lett., 7, 370 (2018). P. Alagi, N. Hadjichristidis, Y. Gnanou, and X. Feng, ACS Macro Lett., 8, 664 (2019). R. Uematsu, C. Saka, Y. Sumiya, T. Ichino, T. Taketsugu, and S. Maeda, Chem. Commun., 53, 7302 (2017). E. Arancibia, J. Grotewold, E. A. Lissi, and A. E. Villa, J. Polym. Sci. Part A: Polym. Chem., 7, 3430 (1969). V. A. Dodonov, Yu. L. Kuznetsova, M. A. Lopatin, and A. A. Skatova, Russ. Chem. Bull., 53, 2209 (2004). D. V. Ludin, Yu. L. Kuznetsova, and S. D. Zaitsev, Polym. Sci. Ser, B, 59, 516 (2017). D. V. Ludin, Yu. L. Kuznetsova, and S. D. Zaitsev, Russ. J. Appl. Chem., 88, 295 (2015). D. V. Ludin and S. D. Zaitsev, Russ. Chem. Bull., 66, 1109 (2017). D. V. Ludin, S. D. Zaitsev, Yu. L. Kuznetsova, A. V. Markin, A. E. Mochalova, and E. V. Salomatina, J. Polym. Res., 24, 117 (2017). M. Yu. Zaremski, D. I. Kalugin, and V. B. Golubev, Polym. Sci. Ser. A, 51, 103 (2009). U. Beginn, Colloid Polym. Sci., 286, 1465 (2008). D. Kalugin, O. Borisova, M. Zaremski, E. Garina, D. Kolesov, B. Bulgakov, and A. Avdeev, Eur. Polym. J., 60, 213 (2014). Md. M. Alam, K. S. Jack, D. J. T. Hill, A. K. Whittaker, and H. Peng, Eur. Polym. J., 116, 394 (2019). K. R. Shull, Macromolecules, 35, 8631 (2002). Y. Chen, H. Chen, M. Feng, and Y. Dong, Eur. Polym. J., 85, 489 (2016). C. Zheng, Soft Matter, 15, 5357 (2019). D. V. Ludin, Yu. L. Kuznetsova, O. G. Zamyshlyaeva, and S. D. Zaitsev, Polym. Sci. Ser. B, 59, 7 (2017). A. Grigoreva, E. Polozov, and S. Zaitsev, Colloid Polym. Sci., 297, 1423 (2019). W. L. F. Armarego and C. C. L. Chai, Purification of Laboratory Chemicals, Elsevier, Oxford, 2013. H. C. Brown and U. S. Racherla, J. Org. Chem., 51, 427 (1986). F. Derikvand, F. Bigi, R. Maggi, C. G. Piscopo, and G. Sartori, J. Catal., 271, 99 (2010). K. Ito and Y. Yamashita, J. Polym. Sci. Part B: Polym. Lett., 3, 637 (1965). F. Tüdős, T. Kelen, T. Földes-Berezhnykh, and B. Turcsányi, Kinet. Catal. Lett., 2, 439 (1975). D. V. Ludin, Yu. L. Kuznetsova, I. D. Grishin, V. A. Kuropatov, and S. D. Zaitsev, Russ. Chem. Bull., 65, 1859 (2016). Yu. L. Kuznetsova, S. A. Chesnokov, S. D. Zaitsev, and D. V. Ludin, Polym. Sci. Ser. B, 54, 434 (2012). F. Tüdős and T. Földes-Berezsnich, Prog. Polym. Sci., 14, 717 (1989). V. Beraud, Y. Gnanou, J. C. Walton, and B. Maillard, Tetrahedron Lett., 41, 1195 (2000). V. Béraud, L. Businelli, Y. Gnanou, and B. Maillard, Macromol. Rapid Commun., 21, 901 (2000). K. U. Ingold and B. P. Roberts, Free-Radical Substitution Reactions, Wiley-Interscience, New York, 1971. A. M. Aerdts, J. W. de Haan, A. L. German, and G. P. M. van der Velden, Macromolecules, 24, 1473 (1991). G. H. J. van Doremaele, A. L. German, N. K. de Vries, and G. P. M. van der Velden, Macromolecules, 23, 4206 (1990). Y. Isobe, T. Nakano, and Y. Okamoto, J. Polym. Sci. Part A: Polym. Chem., 39, 1463 (2001). J.-F. Lutz, B. Kirci, and K. Matyjaszewski, Macromolecules, 36, 3136 (2003). E. V. Chernikova, V. V. Yulusov, E. S. Garina, Yu. V. Kostina, G. N. Bondarenko, and A. Yu. Nikolaev, Polym. Sci. Ser. B, 55, 176 (2013). C. L. H. Wong, J. Kim, and J. M. Torkelson, J. Polym. Sci. Part B: Polym. Phys., 45, 2842 (2007). Y. Guo, X. Gao, and Y. Luo, J. Polym. Sci. Part B: Polym. Phys., 53, 860 (2015).