Polymer‐ and Dendrimer‐Bound Ti‐TADDOLates in Catalytic (and Stoichiometric) Enantioselective Reactions: Are pentacoordinate cationic Ti complexes the catalytically active species?

Helvetica Chimica Acta - Tập 79 Số 6 - Trang 1710-1740 - 1996
Dieter Seebàch1, Roger Martí1, Tobias Hintermann1
1Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH‐Zentrum, Universitätstrasse 16, CH–8092 Zürich

Tóm tắt

Abstractα,α,α′,α′‐Tetraaryl‐1,3‐dioxolane‐4,5‐dimethanols (TADDOLs), containing styryl groups either at C(2) of the heterocyclic ring or in the α‐position, were prepared in the usual way (18–22, 24, 25). These compounds were copolymerized with styrene and divinylbenzene in a suspension, yielding polymers (33–40, Scheme 3) as beads with a rather uniform particle‐size distribution (150–45 μm), swellable in common organic solvents. HOCH2‐ and BrCH2‐substituted TADDOLs were also prepared and used for attachement to Merrifield resin or to dendritic molecules (23, 26–32). The TADDOL moieties in these materials are accessible to form Ti (and Al) complexes (Scheme 4) which can be used as polymer‐ or dendrimer‐bound reagents (stoichiometric) or Lewis acids (catalytic). The reactions studied with these new chiral auxiliaries are: enantioselective nucleophilic additions to aldehydes (of R2Zn and RTi(OCHMe2)3; Scheme 5, Table 1) and to ketones (of LiAlH4, Table 2); enantioselective ring opening of meso‐anhydrides (Scheme 6); [4+2] and [3+2] cycloadditions of 3‐crotonyl‐1,3‐oxazolidin‐2‐one to cyclopentadiene and to (Z)‐N‐benzylidenephenylamine N‐oxide ( → 48, 49, Scheme 7, Tables 3, 4, and Fig. 5). The enantioselectivities reached with most of the polymer‐bound or dendritic TADDOL ligands were comparable or identical to those observed with the soluble analogs. The activity of the polymer‐bound Lewis acids was only slightly reduced as compared with that encountered under homogeneous conditions. Multiple use of the beads (up to 10 times), without decreased performance, has been demonstrated (Figs. 3 and 4). The poorer selectivity in the Diels‐Alder reaction (Scheme 7a), induced by the polymer‐bound Cl2Ti‐TADDOLate as compared to the soluble one, is taken as an opportunity to discuss the mechanism of this Lewis‐acid catalysis, and to propose a cationic, trigonal‐bipyramidal complex as the catalytically active species (Fig. 6). It is suggested that similar cations may be involved in other Ti‐TADDOLate‐mediated reactions as well.

Từ khóa


Tài liệu tham khảo

Seebach D., 1983, Modern Synthetic Methods, 217

10.1021/jo00111a042

Seebach D., 1980, Modern Synthetic Methods, 91

10.1351/pac198355111807

Dahinden R., 1995, Encyclopedia of Reagents for Organic Synthesis, 2167

10.1002/ange.19961080508

10.1002/anie.199605191

A. K.Beck R.Dahinden F. N. M.Kühnle in ‘ACS Symp. Series Reductions in Organic Chemistry’ Ed. A. F. Abdel‐Magid 1996 in press.

Seebach D., 1996, Croatica Chim. Acta, 69, 459

Sherrington D. C., 1988, Syntheses and Separations Using Functional Polymers, 1

Hodge P., 1980, Polymer‐supported Reactions in Organic Synthesis, 1

Blaser H. U., 1995, Modern Synthetic Methods, 181

Maud J. M., 1992, Solid Supports and Catalysts in Organic Synthesis, 40

10.1016/B978-0-08-096701-1.00183-X

10.1016/B978-008046518-0.00114-8

10.1021/ja00897a025

10.1021/ja00902a054

10.1016/0040-4020(96)00216-5

10.1021/cr9402081

10.1002/ange.19961080104

10.1002/anie.199600171

10.1016/0040-4020(95)00467-M

10.1021/jm00035a001

10.1021/jm00036a001

10.1016/S0040-4020(01)90481-8

10.1002/masy.19961010140

10.1002/hlca.19950780703

U.Lengweiler Diss. ETH Zürich No. 11405 1995.

10.1016/S0040-4020(01)80529-9

Seebach D., 1994, Polish J. Chem., 68, 2397

Hodge P., 1980, Polymer‐supported Reactions in Organic Synthesis, 469

10.1021/jo00288a051

10.1007/BF01045171

10.1021/cr00013a003

10.1248/cpb.36.803

10.1016/0040-4039(96)00358-9

10.1002/ange.19921040133

10.1002/anie.199200841

10.1016/S0040-4020(01)90463-6

10.1016/0957-4166(96)00060-2

10.1002/ange.19951072125

10.1002/anie.199523951

10.1002/hlca.19960790328

10.1002/cber.19941270415

10.1246/bcsj.61.4379

10.1002/hlca.19870700406

10.1016/S0040-4039(00)61762-8

10.1021/jo00084a041

Irurre J., 1994, Afinidad, 454, 413

R.Dahinden Diss. ETH Zürich No. 11822 1996.

10.1016/0040-4020(94)01100-E

10.1016/0040-4039(94)02478-T

10.1016/0040-4039(95)00064-J

E.Wada H.Yasuoka S.Kanemasa Chem. Lett.1994 1637;

E.Wada W.Pei S.Kanemasa Chem. Lett.1994 2345.

10.1002/hlca.19950780524

10.1021/ja00099a068

10.1021/jo00118a003

N.Oguni N.Satoh H.Fujii Synlett1995 1043.

10.1016/S0040-4039(00)77048-1

10.1002/ange.19951071812

10.1002/anie.199520051

10.1002/ange.19911030124

10.1002/anie.199100991

10.1002/ange.19911031034

10.1002/anie.199113211

10.1016/S0040-4020(01)89373-X

Wang Y. M., 1996, Synthetic Methods of Organometallic and Inorganic Chemistry, 101

10.1002/ange.19911030820

10.1002/anie.199110081

10.1016/0040-4020(92)80023-9

Behrendt L., 1996, Synthetic Methods of Organometallic and Inorganic Chemistry, 103

10.1016/S0040-4020(01)90475-2

10.1002/hlca.19920750704

10.1002/hlca.19940770802

R. M.Devant H.‐E.Radunz ‘Houben‐Weyl Methoden der Organischen Chemie’ 1995 E 21b p.1324.

Watanabe M., 1990, Chem. Express, 5, 761

M.Watanabe K.Soai J. Chem. Soc. Perkin Trans. 11994 837;

10.1016/0014-3057(94)00157-X

C.Dreisbach G.Wischnewski U.Kragl C.Wandrey J. Chem. Soc. Perkin Trans. 11995 875;

10.1002/ange.19961080612

10.1002/anie.199606421

Hodge P., 1990, Innovation and Perspectives in Solid Phase Synthesis, 273

10.1016/0014-3057(95)00017-8

C.Caze N. E.Moualij P.Hodge C. J.Lock J.Ma J. Chem. Soc. Perkin Trans. 11995 345;

10.1016/0957-4166(95)00365-V

K.Narasaka M.Inoue N.Okada Chem. Lett.1986 1109.

10.1021/ja00196a045

10.1021/cr00013a013

10.1080/00304949409458024

J.Jurczak T.Bauer C.Chapuis ‘Houben‐Weyl Methoden der Organischen Chemie’ 1995 E21c p.2856.

10.1021/jo00111a041

10.1021/ja00120a041

10.1021/jo00126a039

10.1016/S0040-4039(00)73373-9

10.1016/0957-4166(95)00177-Q

10.1021/jo00098a029

10.1021/ja952726e

10.1021/jo951204e

10.1016/0923-1137(94)00087-L

10.1016/0957-4166(95)00333-K

10.1002/ange.19911030106

10.1002/anie.199100491

10.1021/ja00122a013

10.1021/ja00100a004

10.1038/378767a0

10.1002/hlca.19920750203

10.1002/ange.19951070822

10.1002/anie.199509171

10.1021/ar00060a003

10.1016/0957-4166(95)00181-N

10.1016/0957-4166(95)00124-8

F.Toda K.Tanaka T.Okada J. Chem. Soc. Chem. Commun.1995 639;

10.1002/ange.19941060707

10.1002/anie.199407281

10.1016/0040-4039(91)80149-Z

10.1021/om00039a017

10.1021/om00018a015

C. R.Sarko M.DiMare unpublished results private communication 1995.

10.1021/ja952730q

10.1039/cs9730200163

10.1039/df9470200018

10.1021/cr60211a005

10.1021/ic50007a047

10.1021/ic50019a022

Pitsch S., 1994, Polish J. Chem., 68, 2383

10.1002/ange.19710831706

10.1002/anie.197106871

10.1002/ange.19730850302

10.1002/anie.197300911

Luckenbach R., 1973, Dynamic Stereochemistry of Pentacoordinated Phosphorus and Related Elements

10.1021/ja00470a012

10.1002/ange.19951071004

10.1002/anie.199510591

G.Jaeschke ETH Zürich hitherto unpublished results 1995.

S.Chowdhury Master Thesis ETH Zürich 1995.

K.Narasaka Synthesis1991 1.

10.1002/ange.19951071104

10.1002/anie.199511431

Beck A. K., 1991, Chimia, 45, 238, 10.2533/chimia.1991.238

10.1021/jo00408a041

Ciardelli F., 1986, Gazz. Chim. Ital., 116, 533

10.1002/macp.1965.020850112

10.1021/jo01351a016

Ott J., 1990, New J. Chem., 14, 495

R.Grice L. N.Owen J. Chem. Soc.1963 1947.

Alami S. W., 1987, React. Polym., 6, 213

10.1080/00222337908056687

10.1021/ja00011a031

10.1016/0040-4020(84)85095-4

10.1021/jo00302a035

10.1021/ja00212a037

W.Rudel ‘Houben‐Weyl Methoden der Organischen Chemie’ 1968 10/4 p.330.