Polycystic ovary rat model exposure to 150 kHz intermediate frequency: hypothalamic-pituitary-ovarian axis at the receptor, cellular, tissue, and hormone levels

Stephanie Mohammed1, Venkatesan Sundaram2, Chalapathi Rao Adidam Venkata3, Nikolay Zyuzikov1
1Department of Physics, Faculty of Science and Technology, The University of the West Indies, St. Augustine, West Indies, Trinidad and Tobago
2Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, West Indies, Trinidad and Tobago
3Department of Clinical Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, West Indies, Trinidad and Tobago

Tóm tắt

Abstract Introduction

The hypothalamic-pituitary-ovarian (HPO) axis is the principal regulator of the reproductive system. The neurons in the arcuate nucleus of the hypothalamus signal the basophilic cells of the anterior pituitary to release luteinizing hormone (LH) and follicle stimulating hormone (FSH), which bind to the granulosa and theca cells of a follicle in the ovary to promote healthy follicular development. Disruption of this process at any time can lead to polycystic ovaries and, if left untreated, can lead to Polycystic Ovarian Syndrome (PCOS), one of the leading causes of infertility. A novel treatment option using 150 kHz Intermediate Frequency (IF) Electromagnetic Radiation (EMR) has been proposed to monitor the effect of this frequency during cystic development.

Methods

To prove this, an experiment was conducted to study the effect of whole-body exposure to 150 kHz EMR for 8 weeks at receptor, cellular, tissue and hormonal levels on the HPO axis of 25 young cyclic female rats.

Results

The results showed that 150 kHz EMR did not affect the histoarchitecture of neurons of arcuate nucleus of the hypothalamus of PCO-induced rats. It was also found that the number of basophilic cells of the pituitary gland was increased and the immunoreactivity of LH and FSH secretion increased. This EMR field also decreased the development of follicular cysts in the ovary and possibly increased the immunoreactivity of the LH and FSH receptors as well on the theca and granulosa cells of follicles in the ovary.

Conclusion

There are still many limitations to this study. If properly evaluated, the results of this experiment could help develop a new non-invasive treatment option for women with PCOS in the near future.

Từ khóa


Tài liệu tham khảo

Acevedo-Rodriguez A, Kauffman AS, Cherrington BD, Borges CS, Roepke TA, Laconi M. 2018. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signaling. J. Neuroendocrinol. 30; (10): 312590 .

Ding T, Hardiman PJ, Petersen I, Wang F-F, Qu F, Baio G. The prevalence of polycystic ovary syndrome in reproductive-aged women of different ethnicity: a systematic review and meta-analysis. Oncotarget. 2017;8:9635.

Baskind NE, Balen AH. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Pract Res Clin Obstet & Gynecol. 2016;37:80–97.

Mohammed SB, Nayak BS. Polycystic ovarian syndrome trend in a nutshell. Int J Women's Health Reprod Sci. 2017;5(3):153–7.

Wdowiak A, Mazurek PA, Wdowiak A, Bojar I. Effect of electromagnetic waves on human reproduction. Ann Agric Environ Med. 2017;24(1):13–8.

Amer SA, Li TC, Coole ID. Repeated laparoscopic ovarian diathermy is effective in women with anovulatory infertility due to polycystic ovarian syndrome. Ferti Steril. 2003;79(5):1211–5.

Armar NA, Mc Garrigle HHG, Honour J, Holownia P, Jacob HS, Lachelin GCL. Laparoscopic ovarian diathermy in the management of anovulatory infertility in women with polycystic ovaries: endocrine changes and clinical outcomes. Fertil Steril. 1990;53:45–9.

Voloshin T, Munster M, Blatt R, Shteingauz A, Roberts PC, Schmelz EM, et al. Alternating electric fields (TTFields) in combination with paclitaxel are therapeutically effective against ovarian cancer cells in vitro and in vivo. Int J Cancer. 2016;139(12):2850–8.

Stupp R, Taphoorn M, Driven L, Taillibert S, et al. Tumour treating fields (fields) – a novel Cancer treatment modality: translating preclinical evidence and engineering into a survival benefit with delayed decline in quality of life. Int J Radiat Oncol Biol Phys. 2017;99:5.

Kinzel A, Ambrogi M, Varshaver M, Kirson ED. Tumor treating fields for Glioblastoma treatment: patient satisfaction and compliance with the second-generation Optune® system. Clin Med Insights Oncol. 2019;13.

Mohammed S, Sundaram V, Zyuzikov N. Effect of 150kHz electromagnetic radiation on the development of polycystic ovaries induced by estradiol valerate in Sprague Dawley rats. J Ovarian Res. 2021;14:26.

Ahmadi SS, Khaki AA, Ainehci N, Alihemmatic A, Khatooni AA, Khaki A, et al. Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats. Electron Physician. 2016;8(3):2168.

Brawer JR, Munoz M, Farookhi R. Development of the polycystic ovarian condition (PCO) in the estradiol Valverate treated rats. Biol Reprod. 1986;35:647–55.

Barnes RB, Levrant SG. “Pharmacology of Estrogens”. In Treatment of the Postmenopausal Woman. AP. 2007: 767–777.

Mohammed S, Sundaram V. Comparative study of metachromatic staining methods in assessing the Exfoliative cell types during Oestrous cycle in Sprague Dawley laboratory rats. Int J Morphol. 2018;36(3):962–8.

Mohammed RN, Samira R, Zahra VT, Hassan A. Effects of high-fat diet on the numerical density and number of neuronal cells and the volume of the mouse hypothalamus; A stereological study. Anat Cell Biol. 2012;45:178–84.

Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

Montemurro DG. Weight and histology of the pituitary gland in castrated male rats with hypothalamic lesions. J Endocrinol. 1964;30(1):57–67.

Tayefi Nasrabadi H, Gavami M, Akbarzadeh A, Beheshti R, Mohammadnejad D, Abedelahi A. Preservation of mouse ovarian tissue follicle morphology and ultra-structure after vitrifying in biotechnological protocols. J Ovarian Res. 2015;8:7.

Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in bone tissue – a review. Diag Pathol. 2014;9:221.

Brawer JR, Nattolin F, Martin J, Sonnenschein C. Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in female rats. Endocrinol. 1978;103:50.

Cussons DA. Polycystic ovary syndrome. N Engl J Med. 2005;352:112–36.

Shri D, Vine DF. Animal models of polycystic ovarian syndrome – a focused review of rodent modules in relationship to clinical phenotypes and cardio metabolic risk. Fert Steril. 2012;98(1):185–93.

Roa J. Role of gonadotropin neurons and their neuronal afferents as key integrators between food intake regulatory signals and the control of reproduction. J Endocrinol. 2013.

Halasova E, Tothova B, Sivonova M, et al. Effect of acute intermediate frequency electromagnetic field exposure on human neural cells. ELEKTRO. 2020;2020:1–6.

Othoman AI. Effect of electromagnetic radiation exposure on histology and DNA content of the brain cortex and hypothalamus of young and adult male albino rats. J Rad Res Appl Sci. 2012;5(1):1–20.

Dorfman VB, Fraunhoffer N, Inserra PIF, Loidl CF, Vitullo AD. Histological characterization of gonadotropin-releasing hormone (GnRH) in the hypothalamus of the south American Plains Vizcacha (Lagostonus Maximus). J Mol Histol. 2011;42:311–21.

Schauer C, Tong T, Petijean H, Blum T, Mai O, et al. Hypothalamic gonadotropin-releasing hormone (GnRH) receptor neurons fire in synchrony with the female reproductive cycle. J Neurophysiol. 2015;114(2):1008–21.

Harter CJL, Kavanagh GS, Smith JS. The role of kisspeptin neurons in reproduction and metabolism. J Endocrinol. 2008;238(3):R173–83.

Heiman J. The anterior pituitary gland in tumor-bearing rats. Am J Cancer Res. 1938;33(3):423–42.

Larkin S, Ansorge O. Development and microscopic anatomy of the pituitary gland. In Endotex [Internet]. MD Text.com, Inc. 2017.

Kaur M, Khera KS. Impact of cell phone radiations on pituitary gland and biochemical parameter in albino rat. Octa J Biosci. 2012;6(1):1–04.

Brat LR, Godus WE, Bennette WR, Beckman DA. Reproductive and teratologic effects of electromagnetic fields. Reprod Toxicol. 1993;7(6):535–80.

Nussey S, Whitehead S. Endocrinology: an integrated approach. Oxford: BIOS Scientific Publishers; 2001.

Brawer CPD, J.R.Farookhi R. Pituitary gonadotropin-releasing hormone receptor content in rats with polycystic ovaries. Biol Reprod. 1988;38:562–7.

Berkelmann L, Bader A, Meshksar S, Dierks A, Majernik GH, Krauss JK, et al. Tumor treating fields (TTFields): investigation on the mechanism of action by electromagnetic exposure of cells in telophase/cytokinesis. Sci Rep. 2019;9(1):1–11.