Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation

Nature Communications - Tập 11 Số 1
Yuanzhe Liang1, Yu Zhu1, Cheng Liu2, Kueir‐Rarn Lee3, Wei‐Song Hung3, Zhenyi Wang1, Youyong Li2, Menachem Elimelech4, Jian Jin1, Shihong Lin5
1i-Lab and CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123, Suzhou, P.R. China
2Institute of Functional Nano and Soft Materials, Soochow University, 215123, Suzhou, P. R. China
3R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, 32023, Chung Li, Taiwan
4Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
5Interdisciplinary Material Science Program, Vanderbilt University, Nashville, TN, 37235, USA

Tóm tắt

AbstractSeparating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Achieving such a precise separation using membranes requires Angstrom scale pores with a high level of pore size uniformity. Herein, we demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization (SARIP). The dynamic, self-assembled network of surfactants facilitates faster and more homogeneous diffusion of amine monomers across the water/hexane interface during interfacial polymerization, thereby forming a polyamide active layer with more uniform sub-nanometre pores compared to those formed via conventional interfacial polymerization. The polyamide membrane formed by SARIP exhibits highly size-dependent sieving of solutes, yielding a step-wise transition from low rejection to near-perfect rejection over a solute size range smaller than half Angstrom. SARIP represents an approach for the scalable fabrication of ultra-selective membranes with uniform nanopores for precise separation of ions and small solutes.

Từ khóa


Tài liệu tham khảo

Elimelech, M. & Phillip, W. A. The future of seawater and the environment. Science 333, 712–717 (2011).

Gin, D. L. & Noble, R. D. Designing the next generation of chemical separation membranes. Science 332, 674–676 (2011).

Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).

Feng, X. et al. Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuous transport pathways. Sci. Adv. 5, eaav9308 (2019).

Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

Werber, J. R. & Elimelech, M. Permselectivity limits of biomimetic desalination membranes. Sci. Adv. 4, eaar8266 (2018).

Ritt, C. L., Werber, J. R., Deshmukh, A. & Elimelech, M. Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: Implications for permeability and selectivity. Environ. Sci. Technol. 53, 6214–6224 (2019).

Lau, W. J., Ismail, A. F., Misdan, N. & Kassim, M. A. A recent progress in thin film composite membrane: a review. Desalination 287, 190–199 (2012).

Petersen, R. J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 83, 81–150 (1993).

Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).

Wittbecker, E. L. & Morgan, P. W. Interfacial polycondensation. I. J. Polym. Sci. 40, 289–297 (1959).

Morgan, P. W. & Kwolek, S. L. Interfacial polycondensation. II. Fundamentals Polym. Formation Liq. Interfaces J. Polym. Sci. 40, 299–327 (1959).

Freger, V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 19, 4791–4797 (2003).

Freger, V. Kinetics of film formation by interfacial polycondensation. Langmuir 21, 1884–1894 (2005).

Tan, Z., Chen, S., Peng, X., Zhang, L. & Gao, C. Polyamide membranes with nanoscale Turing structures for water purification. Science 360, 518–521 (2018).

Wang, Z. et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Commun. 9, 2004 (2018).

Chowdhury, M. R., Steffes, J., Huey, B. D. & McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 361, 682–686 (2018).

Mansourpanah, Y., Madaeni, S. S. & Rahimpour, A. Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance. J. Membr. Sci. 343, 219–228 (2009).

Duong, P. H., Anjum, D. H., Peinemann, K. V. & Nunes, S. P. Thin porphyrin composite membranes with enhanced organic solvent transport. J. Membr. Sci. 563, 684–693 (2018).

Cui, Y., Liu, X. Y. & Chung, T. S. Ultrathin polyamide membranes fabricated from free-standing interfacial polymerization: Synthesis, modifications, and post-treatment. Ind. Eng. Chem. Res. 56, 513–523 (2017).

Saha, N. K. & Joshi, S. V. Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type. J. Membr. Sci. 342, 60–69 (2009).

Azarteimour, F., Amirinejad, M., Parvini, M. & Yarvali, M. Organic phase addition of anionic/non-ionic surfactants to poly (paraphenyleneterephthalamide) thin film composite nanofiltration membranes. Chem. Eng. Process. Process. Intensif. 106, 13–25 (2016).

Chen, H. et al. Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization. Macromolecules 40, 7542–7557 (2007).

Liu, T. Y. et al. Fabrication of a high-flux thin film composite hollow fiber nanofiltration membrane for wastewater treatment. J. Membr. Sci. 478, 25–36 (2015).

Tang, C. Y., Kwon, Y. N. & Leckie, J. O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 242, 149–167 (2009).

Donnan, F. G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. J. Membr. Sci. 100, 45–55 (1995).

Peeters, J. M. M., Boom, J. P., Mulder, M. H. V. & Strathmann, H. Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci. 145, 199–209 (1998).

Wu, D., Huang, Y., Yu, S., Lawless, D. & Feng, X. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. J. Membr. Sci. 472, 141–153 (2014).

Jiang, C. et al. Thin-film composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration. J. Membr. Sci. 589, 117244 (2019).