Polar solvation dynamics of polyatomic solutes: Simulation studies in acetonitrile and methanol

Journal of Chemical Physics - Tập 103 Số 8 - Trang 3038-3060 - 1995
P. V. Kumar1, Mark Maroncelli1,2
1Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802
2Materials Research Institute (MRI)

Tóm tắt

This paper describes results of simulations of solvation dynamics of a variety of solutes in two reference solvents, acetonitrile and methanol. Part of these studies involve attempts to realistically model the solvation dynamics observed experimentally with the fluorescence probe coumarin 153 (C153). After showing that linear response simulations afford a reliable route to the dynamics of interest, experimental and simulation results for C153 are compared. Agreement between the observed and calculated dynamics is found to be satisfactory in the case of acetonitrile but poor in the case of methanol. The latter failure is traced to a lack of realism in the dielectric properties of the methanol model employed. A number of further simulations are then reported for solvation of a number of atomic, diatomic, and benzenelike solutes which are used to elucidate what features of the solute are important for determining the time dependence of the solvation response. As far as large polyatomic solutes like C153 are concerned, the solute attribute of foremost importance is shown to be the ‘‘effective moment’’ of its charge distribution (actually the difference between the S1 and S0 charge distributions). This effective moment, determined from consideration of continuum electrostatics, provides a simple measure of how rapidly the solute’s electric field varies spatially in the important regions of the solvent. Simulations of fictitious excitations in a benzene solute show that this single quantity is able to correlate the dynamics observed in widely different solutes. Also explored is the effect of solute motion on its solvation dynamics. While of minor relevance for large solutes like C153, in small solutes of the size of benzene, solute motion can dramatically enhance the rate of solvation. A model based on independent solvent dynamics and solute rotational motion is able to account for the bulk of the observed effects. Finally, the influence of solute polarizability on solvation dynamics is considered. Simulations of diatomic molecules with a classical polarizability show that the rate of solvation decreases roughly in proportion to the polarizability of the solute. This dynamical effect can be understood in terms of the change that polarizability produces on the solvation force constant. These simulations indicate that the magnitude of the effect should be relatively small (10%–25%) in real systems, at least in the linear response limit.

Từ khóa


Tài liệu tham khảo

1993, J. Mol. Liq., 57, 1, 10.1016/0167-7322(93)80045-W

1991, Chem. Phys., 152, 57, 10.1016/0301-0104(91)80034-F

1990, Adv. Photochem., 15, 1, 10.1002/9780470133453.ch1

1991, Adv. Chem. Phys., 80, 1

1989, Ann. Rev. Phys. Chem., 40, 115, 10.1146/annurev.pc.40.100189.000555

1993, Ann. Rev. Phys. Chem., 44, 335, 10.1146/annurev.pc.44.100193.002003

1994, Nature (London), 370, 263, 10.1038/370263a0

1993, Angew. Chem. Int. Ed. Engl., 32, 359, 10.1002/anie.199303591

1988, J. Chem. Phys., 89, 5044, 10.1063/1.455649

1989, Chem. Phys. Lett., 157, 501, 10.1016/S0009-2614(89)87399-3

1992, J. Chem. Phys., 97, 4356, 10.1063/1.463905

1991, J. Chem. Phys., 94, 2084, 10.1063/1.459932

1991, J. Chem. Phys., 94, 5961, 10.1063/1.460431

1983, J. Chem. Phys., 78, 4145, 10.1063/1.445091

1985, J. Phys. Chem., 89, 4181, 10.1021/j100266a008

1993, J. Phys. Chem., 97, 13, 10.1021/j100103a004

1993, J. Chem. Phys., 99, 1300, 10.1063/1.465374

1993, J. Chem. Phys., 99, 4926, 10.1063/1.466041

1994, J. Chem. Phys., 100, 1477, 10.1063/1.466627

1994, Chem. Phys., 183, 187, 10.1016/0301-0104(94)00026-3

1995, J. Stat. Phys., 78, 239, 10.1007/BF02183347

1991, J. Chem. Phys., 95, 4715, 10.1063/1.461742

1994, J. Mol. Liq., 60, 25, 10.1016/0167-7322(94)00738-1

1994, Nature (London), 369, 471, 10.1038/369471a0

1995, J. Chem. Phys., 102, 2691, 10.1063/1.468645

1995, J. Phys. Chem., 99, 2503

1994, J. Chem. Phys., 100, 6700, 10.1063/1.467030

1992, J. Chem. Phys., 97, 8522, 10.1063/1.463370

1994, J. Chem. Phys., 100, 6672, 10.1063/1.467027

1993, Chem. Phys., 173, 133, 10.1016/0301-0104(93)80135-V

1993, J. Chem. Phys., 98, 7277, 10.1063/1.464719

1992, J. Chem. Phys., 97, 2618, 10.1063/1.463050

1993, J. Chem. Phys., 99, 2068, 10.1063/1.465271

1994, J. Mol. Liq., 60, 1, 10.1016/0167-7322(94)00737-3

1993, Chem. Phys., 176, 575, 10.1016/0301-0104(93)80262-8

1991, J. Phys. Chem., 95, 2116, 10.1021/j100159a007

1989, J. Phys. Chem., 93, 753, 10.1021/j100339a049

1995, J. Phys. Chem., 99, 4811, 10.1021/j100013a060

1988, J. Chem. Phys., 89, 3783, 10.1063/1.454901

1988, J. Chem. Phys., 89, 4288, 10.1063/1.454811

1991, J. Phys. Chem., 95, 1082, 10.1021/j100156a013

1990, J. Phys. Chem., 94, 4470, 10.1021/j100374a023

1991, J. Chem. Phys., 95, 5966

1994, J. Chem. Phys., 100, 4093, 10.1063/1.466347

1995, J. Chem. Phys., 102, 9059, 10.1063/1.468854

See AIP document no. PAPS JCPSA-103-3038-2 for 2 pages of the supplementary table (2 pages) containing the coordinates and charges of coumarin 153 used in these simulations. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, Carolyn Gehlbach, 500 Sunnyside Boulevard, Woodbury, New York 11797-2999. Fax: 516-576-2223, e-mail: [email protected]. The price is $1.50 for each microfiche (98 pages) or $5.00 for photocopies of up to 30 pages, and $0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.

1984, Mol. Phys., 51, 1141, 10.1080/00268978400100731

1987, J. Phys. Chem., 91, 4934, 10.1021/j100303a011

1991, J. Am. Chem. Soc., 113, 2810, 10.1021/ja00008a002

1977, J. Am. Chem. Soc., 99, 4899, 10.1021/ja00457a004

1990, J. Comput. Chem., 11, 431, 10.1002/jcc.540110404

1992, J. Comput. Chem., 13, 749, 10.1002/jcc.540130609

1993, J. Phys. Chem., 97, 12205, 10.1021/j100149a018

1994, J. Phys. Chem., 98, 13513, 10.1021/j100102a014

1993, Pure Appl. Chem., 65, 1729, 10.1351/pac199365081729

1987, J. Comput. Phys., 72, 156, 10.1016/0021-9991(87)90076-3

1993, J. Chem. Phys., 99, 8552, 10.1063/1.465578

1993, Chem. Phys., 98, 7773

1994, Chem. Phys. Lett., 228, 317, 10.1016/0009-2614(94)00949-X

1988, J. Phys. Chem., 92, 4811, 10.1021/j100327a049

1984, Adv. Chem. Phys., 56, 467

1993, J. Chem. Phys., 98, 8929, 10.1063/1.464452

1991, J. Phys. Chem., 95, 7055, 10.1021/j100171a061

1983, Mol. Phys., 48, 451, 10.1080/00268978300100331

1991, Pure Appl. Chem., 63

1993, Appl. Spectrosc., 47, 1100, 10.1366/0003702934067973

1984, Mol. Phys., 51, 1163, 10.1080/00268978400100741

1994, J. Phys. Chem., 98, 12108, 10.1021/j100098a002

1994, Mol. Phys., 82, 487, 10.1080/00268979400100364

1993, J. Phys. Chem., 97, 5410, 10.1021/j100122a037

1993, J. Phys. Chem., 97, 10803, 10.1021/j100143a046

1989, J. Chem. Phys., 91, 2594, 10.1063/1.457020

1975, J. Phys. Chem., 79, 2562, 10.1021/j100590a024

1984, Chem. Phys., 86, 257, 10.1016/0301-0104(84)80014-2

1994, Chem. Phys., 183, 207, 10.1016/0301-0104(94)00024-7

1995, J. Chem. Phys., 102, 2888, 10.1063/1.468667

1984, J. Phys. Chem., 88, 6514, 10.1021/j150670a013

1980, Mol. Phys., 39, 493, 10.1080/00268978000100391

1991, J. Chem. Phys., 95, 9219, 10.1063/1.461203

1989, J. Phys. Chem., 93, 7050, 10.1021/j100357a005

1988, J. Chem. Phys., 89, 3248, 10.1063/1.454929

1989, J. Phys. Chem., 93, 4320, 10.1021/j100347a081

1990, J. Chem. Phys., 93, 8682, 10.1063/1.459255

1989, J. Phys. Chem., 93, 2184, 10.1021/j100343a002

1994, J. Chem. Phys., 100, 6700, 10.1063/1.467030

1970, J. Chem. Ed., 47, 261, 10.1021/ed047p261