Polar factorization and monotone rearrangement of vector‐valued functions

Communications on Pure and Applied Mathematics - Tập 44 Số 4 - Trang 375-417 - 1991
Yann Brenier1
1Université de Paris VI

Tóm tắt

AbstractGiven a probability space (X, μ) and a bounded domain Ω in ℝd equipped with the Lebesgue measure |·| (normalized so that |Ω| = 1), it is shown (under additional technical assumptions on X and Ω) that for every vector‐valued function u ∈ Lp (X, μ; ℝd) there is a unique “polar factorization” u = ∇Ψs, where Ψ is a convex function defined on Ω and s is a measure‐preserving mapping from (X, μ) into (Ω, |·|), provided that u is nondegenerate, in the sense that μ(u−1(E)) = 0 for each Lebesgue negligible subset E of ℝd.Through this result, the concepts of polar factorization of real matrices, Helmholtz decomposition of vector fields, and nondecreasing rearrangements of real‐valued functions are unified.The Monge‐Ampère equation is involved in the polar factorization and the proof relies on the study of an appropriate “Monge‐Kantorovich” problem.

Từ khóa


Tài liệu tham khảo

Abraham R., 1983, Manifolds, Tensor Analysis, and Applications

Alvino A. Lions P.‐L. andTrombetti G. On optimization problems with prescribed rearrangements preprint.

Appell P. Le problème géometrique de déblais et des remblais Mémoriale de l'Académie des Sciences Mathématiques Fascicule XXVII Paris 1928.

Aubin J.‐P., 1979, Mathematical Methods of Game and Economic Theory

Bandle C., 1980, Isoperimetric Inequalities

Brenier Y., 1987, Décomposition polaire et réarrangement monotone des champs de vecteurs, C.R. Acad. Sci. Paris, 305, 805

Brenier Y. A combinatorial algorithm for the Euler equation of incompressible flows 8th International Conf. on Computing Methods Versailles 1987.

Brezis H., 1973, Opérateurs Maximaux Monotones

10.1002/cpa.3160370306

Cullen M. J. P., 1984, An extended Lagragian model of semi‐geostrophic frontogenesis, J. Atmos. Sci., 41, 1477, 10.1175/1520-0469(1984)041<1477:AELTOS>2.0.CO;2

10.1002/qj.49711347704

Dautray R. andLions J.‐L. Analyse mathématique et calcul numérique pour les sciences et les techniques Masson Paris 1985.

Ekeland I., 1974, Analyse Convexe et Problèmes Varitionnels

Hardy G. H., 1952, Inequalities

Kantorovich L. V., 1942, On the transfer of masses, Dokl. Akad. Nauk SSSR, 37, 227

10.1007/BF00934745

Monge G. Mémoire sur la théorie des déblais et de remblais Mémoires de l'Académic des Sciences.1781.

Mossino J., 1985, Inégalités Isopérimétriques et Applications en Physique

10.1137/1129093

Rachev S. T. Recent results in the theory of probability metrics to appear.

Royden H. L., 1963, Real Analysis

10.2307/1994198