Plug-and-play inference for disease dynamics: measles in large and small populations as a case study
Tóm tắt
Statistical inference for mechanistic models of partially observed dynamic systems is an active area of research. Most existing inference methods place substantial restrictions upon the form of models that can be fitted and hence upon the nature of the scientific hypotheses that can be entertained and the data that can be used to evaluate them. In contrast, the so-called
Từ khóa
Tài liệu tham khảo
Anderson D., 1980, Biometrika, 191
Bailey N. T. J., 1955, Some problems in the statistical analysis of epidemic data, J. R. Stat. Soc. Ser. B, 17, 35
Bartlett M. S., 1960, Stochastic population models in ecology and epidemiology, Methuen's monographs on applied probability and statistics
Bauch C. T., 2003, Dynamical systems and their applications in biology, 33
Casella G., 1990, Statistical inference.
Conlan A. J. K. Rohani P. Lloyd A. L. Keeling M.& Grenfell B. T. Submitted. Resolving the impact of waiting time distributions on the persistence of measles.
He D.. 2006 Modeling of childhood infectious diseases. PhD thesis McMaster University Canada.
Ionides E. L., 2005, Maximum smoothed likelihood estimation, Stat. Sinica, 15, 1003
Ionides E. L., 2007, Statistical advances in the biomedical sciences
Ionides E. L. Bhadra A.& King A. A.. 2009 Iterated filtering. (http://arxiv.org/abs/0902.0347).
Jacquez J. A., 1996, Compartmental analysis in biology and medicine, 3
King A. A. Ionides E. L. Bretó C. M. Ellner S.& Kendall B.. 2009 pomp: Statistical inference for partially observed Markov processes ( R package ) . (http://pomp.r.forge.r-project.org).
Newman K. B., 2008, Monte Carlo inference for state-space models of wild animal populations, Biometrics, 63, 558
Poyiadjis G., 2006, Gradient-free maximum likelihood parameter estimation with particle filters, In Proc. Am. Control Conf., 3062
R Development Core Team, 2006, R: a language and environment for statistical computing.
Shumway R. H., 2006, Time series analysis and its applications, 2
Toni T. Welch D. Strelkowa N. Ipsen A.& Stumpf M. P.. 2009 Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. 6 187–202. (doi:10.1098/rsif.2008.0172).