Plug-and-play inference for disease dynamics: measles in large and small populations as a case study

Journal of the Royal Society Interface - Tập 7 Số 43 - Trang 271-283 - 2010
Daihai He1, Edward L. Ionides2,3, Aaron A. King1,4,3
1Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
2Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
3Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
4Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Tóm tắt

Statistical inference for mechanistic models of partially observed dynamic systems is an active area of research. Most existing inference methods place substantial restrictions upon the form of models that can be fitted and hence upon the nature of the scientific hypotheses that can be entertained and the data that can be used to evaluate them. In contrast, the so-calledplug-and-playmethods require only simulations from a model and are thus free of such restrictions. We show the utility of the plug-and-play approach in the context of an investigation of measles transmission dynamics. Our novel methodology enables us to ask and answer questions that previous analyses have been unable to address. Specifically, we demonstrate that plug-and-play methods permit the development of a modelling and inference framework applicable to data from both large and small populations. We thereby obtain novel insights into the nature of heterogeneity in mixing and comment on the importance of including extra-demographic stochasticity as a means of dealing with environmental stochasticity and model misspecification. Our approach is readily applicable to many other epidemiological and ecological systems.

Từ khóa


Tài liệu tham khảo

Anderson D., 1980, Biometrika, 191

10.1175/JTECH2049.1

Anderson R. M., 1991, Infectious diseases of Humans, 10.1093/oso/9780198545996.001.0001

10.1109/78.978374

Bailey N. T. J., 1955, Some problems in the statistical analysis of epidemic data, J. R. Stat. Soc. Ser. B, 17, 35

10.1093/biomet/43.1-2.15

10.1007/978-1-4899-3210-5

10.2307/2342553

Bartlett M. S., 1960, Stochastic population models in ecology and epidemiology, Methuen's monographs on applied probability and statistics

Bauch C. T., 2003, Dynamical systems and their applications in biology, 33

10.1111/j.1467-9868.2006.00552.x

10.1126/science.1062226

10.1007/s10651-007-0059-3

10.2307/3100023

10.1098/rstb.1995.0070

10.1073/pnas.93.22.12648

10.1007/978-1-4757-3124-8

10.1214/08-AOAS201

10.1063/1.2436869

10.1109/JPROC.2007.893250

Casella G., 1990, Statistical inference.

10.1098/rsif.2007.1292

10.1038/nature06732

10.1890/03-0520

10.1098/rspb.2006.0030

Conlan A. J. K. Rohani P. Lloyd A. L. Keeling M.& Grenfell B. T. Submitted. Resolving the impact of waiting time distributions on the persistence of measles.

10.1073/pnas.0706461104

10.1016/j.tree.2004.05.008

10.1006/jtbi.1998.0736

10.1007/978-1-4757-3437-9

10.1126/science.287.5453.667

10.1086/286130

10.1038/nature06509

10.1093/ije/11.1.5

10.1111/1467-9876.00187

10.1093/biostatistics/3.4.493

10.1093/imammb/15.1.19

10.1023/A:1011973120681

10.1016/S0022-5193(03)00031-6

10.1046/j.1461-0248.1998.00016.x

10.1098/rspb.1995.0015

10.1038/414716a

10.1890/0012-9615(2002)072[0185:DOMESN]2.0.CO;2

He D.. 2006 Modeling of childhood infectious diseases. PhD thesis McMaster University Canada.

Hilborn R., 1997, The ecological detective., 10.1515/9781400847310

10.1016/S0140-6736(48)91328-2

10.1016/S0140-6736(52)91357-3

Ionides E. L., 2005, Maximum smoothed likelihood estimation, Stat. Sinica, 15, 1003

10.1073/pnas.0603181103

Ionides E. L., 2007, Statistical advances in the biomedical sciences

Ionides E. L. Bhadra A.& King A. A.. 2009 Iterated filtering. (http://arxiv.org/abs/0902.0347).

Jacquez J. A., 1996, Compartmental analysis in biology and medicine, 3

10.1126/science.275.5296.65

10.1098/rspb.2001.1898

10.1046/j.1461-0248.2002.00268.x

10.1098/rsif.2007.1106

10.1002/aic.10106

10.1038/nature07084

King A. A. Ionides E. L. Bretó C. M. Ellner S.& Kendall B.. 2009 pomp: Statistical inference for partially observed Markov processes ( R package ) . (http://pomp.r.forge.r-project.org).

10.1007/s10994-006-6888-8

10.1086/420798

10.1093/acprof:oso/9780198525257.001.0001

10.1126/science.275.5298.334

10.1111/j.1461-0248.2009.01289.x

10.1007/978-1-4757-3437-9_10

10.1007/BF00276956

10.1098/rspb.2001.1599

10.1006/tpbi.2001.1525

10.1038/nature04153

10.1007/978-1-4612-1244-7

10.1126/science.1094442

10.1007/978-1-4899-3242-6

Newman K. B., 2008, Monte Carlo inference for state-space models of wild animal populations, Biometrics, 63, 558

10.1111/j.1467-9868.2007.00642.x

Poyiadjis G., 2006, Gradient-free maximum likelihood parameter estimation with particle filters, In Proc. Am. Control Conf., 3062

R Development Core Team, 2006, R: a language and environment for statistical computing.

10.1093/biomet/88.3.603

10.1093/imammb/1.2.169

Shumway R. H., 2006, Time series analysis and its applications, 2

10.1002/0471722138

10.1038/nature05638

10.1109/78.978383

10.1098/rspb.2004.2715

10.1007/978-94-017-1506-5

Toni T. Welch D. Strelkowa N. Ipsen A.& Stumpf M. P.. 2009 Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. 6 187–202. (doi:10.1098/rsif.2008.0172).

10.1017/S095026880100601X

10.1371/journal.pmed.0020174

10.1086/422341