Plastid phylogenomics and molecular evolution of Alismatales

Cladistics - Tập 32 Số 2 - Trang 160-178 - 2016
T. Gregory Ross1,2, Craig F. Barrett3, Marybel Soto Gomez1,2, Vivienne K. Y. Lam1,2, Claudia L. Henriquez4, Donald H. Les5, Jerrold I. Davis6, Argelia Cuenca7, Gitte Petersen7, Ole Seberg7, Marcela Thadeo8, Thomas J. Givnish9, John G. Conran10, Dennis Wm. Stevenson8, Sean W. Graham1,2
1Department of Botany, 6270 University Boulevard, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
2UBC Botanical Garden & Centre for Plant Research, 6804 Marine Drive SW, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
3Department of Biological Sciences, 5151 State University Dr., California State University, Los Angeles, CA 90032-8201 USA
4Evolution, Ecology & Population Biology, Division of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130 USA
5Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
6L. H. Bailey Hortorium and Section of Plant Biology, Cornell University, Ithaca, NY, 14853 USA
7Natural History Museum of Denmark University of Copenhagen Sølvgade 83 Opg. S DK‐1307 Copenhagen Denmark
8New York Botanical Garden, Bronx, NY 10458 USA
9Department of Botany, University of Wisconsin, Madison, WI, 52706 USA
10Australian Centre for Evolutionary Biology and Biodiversity & Sprigg Geobiology Centre, School of Biological Sciences, Benham Bldg DX 650 312, The University of Adelaide, Adelaide, SA, 5005 Australia

Tóm tắt

AbstractPast phylogenetic studies of the monocot order Alismatales left several higher‐order relationships unresolved. We addressed these uncertainties using a nearly complete genus‐level sampling of whole plastid genomes (gene sets representing 83 protein‐coding and ribosomal genes) from members of the core alismatid families, Tofieldiaceae and additional taxa (Araceae and other angiosperms). Parsimony and likelihood analyses inferred generally highly congruent phylogenetic relationships within the order, and several alternative likelihood partitioning schemes had little impact on patterns of clade support. All families with multiple genera were resolved as monophyletic, and we inferred strong bootstrap support for most inter‐ and intrafamilial relationships. The precise placement of Tofieldiaceae in the order was not well supported. Although most analyses inferred Tofieldiaceae to be the sister‐group of the rest of the order, one likelihood analysis indicated a contrasting Araceae‐sister arrangement. Acorus (Acorales) was not supported as a member of the order. We also investigated the molecular evolution of plastid NADH dehydrogenase, a large enzymatic complex that may play a role in photooxidative stress responses. Ancestral‐state reconstructions support four convergent losses of a functional NADH dehydrogenase complex in Alismatales, including a single loss in Tofieldiaceae.

Từ khóa


Tài liệu tham khảo

10.1016/S0022-2836(05)80360-2

10.2307/2992015

10.1111/j.1095-8339.2009.00996.x

10.1007/s10265-010-0387-5

10.2307/1223768

10.1016/j.tplants.2005.12.004

10.1111/j.1096-0031.2012.00418.x

10.1093/aob/mct264

Barrett C.F., 2014, Investigating the path of plastid genome degradation in an early‐transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms, Mol. Biol. Evol., 12, 2095

10.1007/s11103-011-9753-5

10.1093/oxfordjournals.molbev.a025680

10.1007/s00294-009-0249-7

10.1007/s00239-008-9180-7

10.3897/phytokeys.21.4859

Chase M.W., 2000, Monocots: Systematics and Evolution, 3

10.5642/aliso.20062201.06

10.1111/j.1095-8339.2009.01014.x

Chen J.‐M., 2004, Evolution of apocarpy in Alismatidae using phylogenetic evidence from chloroplast rbcL gene sequence data, Bot. Bull. Acad. Sinica, 45, 33

10.1016/j.ympev.2012.01.016

10.1186/1471-2148-12-30

10.1093/nar/gkn502

10.1007/s00239-012-9496-1

10.1007/978-1-4615-6971-8_7

10.1600/0363644041744365

10.1007/s10592-005-9073-x

10.5642/aliso.20062201.07

10.3732/ajb.2007310

10.1111/j.1574-6941.2006.00060.x

Edwards A.W.F., 1972, Likelihood

10.2307/2412923

10.1146/annurev.es.14.110183.001525

10.1111/j.1558-5646.1985.tb00420.x

10.1073/pnas.94.12.6285

10.5642/aliso.20062201.04

10.3417/2010023

10.1086/317583

10.5642/aliso.20062201.02

10.1007/s00239-009-9317-3

10.1007/978-3-662-03531-3_48

10.2307/2992396

10.1016/j.ympev.2014.02.017

10.1104/pp.123.4.1337

10.1017/CBO9781139002950.002

10.1093/pcp/pch191

10.3732/ajb.0900168

10.1007/s00606-006-0514-x

10.1093/molbev/msq261

10.1093/molbev/mst010

10.1007/s00294-008-0208-8

10.1186/1471-2148-14-82

10.1111/j.1095-8339.2006.00478.x

10.1111/j.1096-0031.2007.00177.x

10.1093/oxfordjournals.aob.a085365

Les D.H., 1995, Monocotyledons: Systematics and Evolution, 353

10.1017/CBO9781139002950.007

10.1006/mpev.1993.1029

10.2307/2419820

10.1600/0363644054782215

10.5642/aliso.20062201.18

10.1600/036364410X539826

Lewis L.A., 2001, A likelihood approach to estimating phylogeny from discrete morphological character data, Syst. Bot., 50, 913

Li X., 2007, The higher‐level phylogeny of monocots based on matK, rbcL and 18S rDNA sequences, J. Syst. Evol., 45, 113

10.1016/j.pnsc.2008.09.008

10.1111/j.1096-0031.2006.00124.x

Mabberley D.J., 1997, The Plant‐Book

Maddison W.P. Maddison D.R. 2007.Mesquite: a modular system for evolutionary analysis. Version 2.0 http://mesquiteproject.org.

10.1086/676675

10.1016/j.plaphy.2010.04.009

10.1007/978-1-4614-5209-6_5

Mering S., 2010, Diversity, Phylogeny, and Evolution in the Monocotyledons, 55

10.1073/pnas.0907801107

Pagel M., 1999, The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies, Syst. Bot., 48, 612

10.1038/348337a0

10.1186/1741-7007-7-84

10.1371/journal.pone.0068591

10.2307/25065682

10.5642/aliso.20062201.05

10.1111/j.1096-0031.2012.00427.x

10.12705/631.2

10.1111/cla.12120

Posluszny U., 2000, Monocots: Systematics and Evolution, 63

10.1086/317584

10.2307/25065680

10.1111/j.1759-6831.2010.00097.x

Rambaut A., 2002, Se‐Al Sequence Alignment Editor, Ver. 2.0a11

10.1079/9780851999043.0045

10.1002/tax.604011

10.1186/1471-2148-14-23

10.1186/s12870-015-0484-7

10.1139/B09-093

10.1214/aos/1176344136

Sculthorpe C.D., 1967, The Biology of Aquatic Vascular Plants

10.1016/j.ympev.2014.01.018

10.1111/boj.12068

10.1017/CBO9781139002950.004

10.1086/509788

10.1093/bioinformatics/btl446

Stamatakis A. 2006b.Phylogenetic models of rate heterogeneity: a high performance computing perspective. Proceedings of 20th IEEE/ACM International Parallel and Distributed Processing Symposium IPDPS2006 High Performance Computational Biology Workshop Rhodos Greece April 2006.

10.3732/ajb.1100491

10.1007/s00239-004-0267-5

Stevenson D.W., 2000, Monocots: Systematics and Evolution, 17

10.1146/annurev.ecolsys.36.102003.152633

Swofford D.L., 2003, PAUP*. Phylogenetic Analysis Using Parsimony *and Other Methods. Version 4

10.1080/10635150701472164

10.1007/978-3-662-03533-7_45

10.1055/s-2004-821278

10.1007/BF02524931

Thiers B. continuously updated.Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium.http://sweetgum.nybg.org/ih/.

10.1007/s002390010222

10.1073/pnas.91.21.9794

10.1007/s00572-005-0033-6

10.1007/978-1-4020-2983-7_2

10.1093/molbev/mst257

10.1007/s11103-011-9762-4

10.1105/tpc.113.113373

10.1093/bioinformatics/bth352

10.1093/acprof:oso/9780198567028.001.0001

10.1016/j.ympev.2008.03.002