Plastics in robots: a degradation study of a humanoid skin mask made of soft urethane elastomer

Springer Science and Business Media LLC - Tập 10 - Trang 1-17 - 2022
Anna Micheluz1, Eva Mariasole Angelin1,2, Julia Sawitzki1, Marisa Pamplona1
1Conservation Science Department, Deutsches Museum, Munich, Germany
2Department of Conservation and Restoration and LAQV-REQUIMTE, Nova School of Science and Technology, Monte da Caparica, Portugal

Tóm tắt

Understanding the degradation of plastic materials is a big challenge for curators, conservators and conservation scientists in museums worldwide aiming to preserve their collections due to the variety of formulations of synthetic polymers and pigments. The conservation of polyurethane (PUR) based objects is challenging because they can suffer from extensive degradation. Particularly PUR elastomers can degrade shortly after their production, as occurred to the mask of the Japanese robot SAYA, which within 8 years suffered from two large tears, discoloration and stickiness. This research aims at studying the degradation phenomena of the androids’ synthetic skin. Better knowledge of the chemical composition of the mask and the chemical and physical decay will contribute to planning a suitable stabilization treatment. Within a multi-analytical approach, colorimetric and microscopic investigations highlighted discolored areas, which showed further color changes within a five months monitoring campaign, confirming the instability of the material likely due to ongoing degradation. Raman microscopy allowed the identification of Pigment White 6 (titanium dioxide TiO2) in the anatase form, known to promote the photosensitivity of PUR substrates towards ultraviolet (UV) light. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy identified the PUR composition of the mask, the presence of phthalates as plasticizers and suggested the formation of quinone chromophores in the polymer structure as a result of photo-oxidation, possibly responsible for the mask yellowing. Evolved gas analysis-mass spectrometry (EGA-MS) and double-shot-gas chromatography/mass spectrometry (TD/Py–GC/MS) analyses support the characterization of the formulation of the mask as being made of methylene diphenyl diisocyanate (MDI) PUR ether elastomer. Plasticizers in high concentration, mainly diisononyl phthalate (DINP) and bis(2-ethylhexyl)phthalate (DEHP), and the UV stabilizer Tinuvin 328 were also detected. In addition, the presence of styrene-acrylonitrile (SAN) could also contribute to the mask’s chemical instability. More amount of UV stabilizer and phthalates were detected at the surface (contributing to its stickiness) than in the inner core. The degradation of the mask results from the light susceptibility of MDI PUR ether and SAN, as well as the higher photochemical activity of anatase. The mask was transferred on to a mannequin and placed in the storage area to prevent light exposure and photo-oxidation. As loose edges had to be stabilized, tests were conducted and adhesive stripes glued with a PUR dispersion were selected for keeping the head’s shape. The novelty of this study is the implementation of conservation science on the study of androids with PUR elastomeric components in robotic collections, which are becoming increasingly popular in technical museums, however still seldomly studied.

Tài liệu tham khảo

Breazeal C. Emotion and sociable humanoid robots. Int J Hum-Comput St. 2003;59(1–2):119–55. https://doi.org/10.1016/S1071-5819(03)00018-1. Hashimoto T, Hiramatsu S, Kobayashi H. Development of face robot for emotional communication between human and robot. In: Robotics Society of Japan, editor. Proceedings, 2006 International Conference on Mechatronics and Automation. Luoyang: IEEE Computer Society Press; 2006. p. 25–30. https://doi.org/10.1109/ICMA.2006.257429. Lee D-W, Lee T-G, So B, Choi M, Shin E-C, Yang K, Baek M-H, Kim H-S, Lee H-G. Development of an android for emotional expression and human interaction. In: IFAC´08 SEOUL, editor. 17th IFAC World Congress. Seoul: IFAC´08 SEOUL; 2008. p. 4336-4337. http://folk.ntnu.no/skoge/prost/proceedings/ifac2008/data/papers/2566.pdf. Lin C-Y, Cheng L-C, Tseng C-K, Gu H-Y, Chung K-L, Fahn C-S, Lu K-J, Chang C-C. A face robot for autonomous simplified musical notation reading and singing. Robot Auton Syst. 2011;59(11):943–53. https://doi.org/10.1016/j.robot.2011.07.001. Lin C-C, Huang C-C, Cheng L-C. An expressional simplified mechanism in anthropomorphic face robot design. Robotica. 2016;34(3):652–70. https://doi.org/10.1017/S0263574714001787. Asheber WT, Lin C-Y, Yen SH. Humanoid head face mechanism with expandable facial expressions. Int J Adv Robot Syst. 2016;13(1):1–8. https://doi.org/10.5772/62181. Hwang HY. Piezoelectric particle-reinforced polyurethane for tactile sensing robot skin. Mech Compos Mater. 2011;47(1):137–44. https://doi.org/10.1007/s11029-011-9192-z. Dąbrowska AK, Rotaru G-M, Derler S, Spano F, Camenzind M, Annaheim S, Stämpfli R, Schmid M, Rossi RM. Materials used to simulate physical properties of human skin. Skin Res Technol. 2016;22:3–14. https://doi.org/10.1111/srt.12235. de Groot S, Lagana A, van Oosten T, van Keulen H, Palmeira M. The wear and tear of polyurethane elastomers. Investigation into properties, degradation and treatments. In: Bechthold T, editor. Future Talks 011: Technology and Conservation of Modern Materials in Design. Munich: Die Neue Sammlung; 2013. p. 89–97. Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci. 2019;90:211–68. https://doi.org/10.1016/j.progpolymsci.2018.12.003. NIIR Board of Consultants & Engineers. The Complete Book of Resins (Alkyd, Amino, Phenolic, Polyurethane, Epoxy, Silicone, Acrylic), Paints, Varnishes, Pigments & Additives. (Surface Coating Products with Formulae). 3rd ed. India: Asia Pacific Business Press Inc.; 2018. Shashoua Y. Inhibiting the inevitable; current approaches to slowing the deterioration of plastics. Macromol Symp. 2006;238:67–77. https://doi.org/10.1002/masy.200650610. De Sa SF, Ferreira JL, Cardoso IP, Macedo R, Ramos AM. Shedding new light on polyurethane degradation: assessing foams condition in design objects. Polym Degrad Stabil. 2017;144:354–65. https://doi.org/10.1016/j.polymdegradstab.2017.08.028. van Oosten T. PUR facts: conservation of polyurethane foam in art and design. Amsterdam: AUP Popular Science; 2011. Mitchell G, France F, Nordon A, Leung Tang P, Gibson LT. Assessment of historical polymers using attenuated total reflectance-Fourier transform infrared spectroscopy with principal component analysis. Herit Sci. 2013;1:28. https://doi.org/10.1186/2050-7445-1-28. Beerkens L, Supply S, Bechthold T. Matti Suuronen´s `Futuro` – prototype, 1968. Back in business in the 21th century. In: Bechthold T, editor. Future Talks 015: Processes. The Making of Design and Modern Art. Materials, Technologies and Conservation Strategies. Munich: Die Neue Sammlung; 2017. p. 129–137. La Nasa J, Biale G, Ferriani B, Colombini MP, Modugno F. A pyrolysis approach for characterizing and assessing degradation of polyurethane foam in cultural heritage objects. J Anal Appl Pyrolysis. 2018;134:562–72. https://doi.org/10.1016/j.jaap.2018.08.004. La Nasa J, Biale G, Sabatini F, Degano I, Colombini MP, Modugno F. Synthetic materials in art: a new comprehensive approach for the characterization of multi-material artworks by analytical pyrolysis. Herit Sci. 2019;7:8. https://doi.org/10.1186/s40494-019-0251-4. Rosu D, Rosu L, Cascaval CN. IR-change and yellowing of polyurethane as a result of UV irradiation. Polym Degrad Stabil. 2009;94(4):591–6. https://doi.org/10.1016/j.polymdegradstab.2009.01.013. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH. The use of polyurethane for structural and infrastructural engineering applications: a state-of-the-art review. Constr Build Mater. 2018;190:995–1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166. Lattuati-Derieux A, Thao-Heu S, Lavédrine B. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry. J Chromatogr A. 2011;1218(28):4498–508. https://doi.org/10.1016/j.chroma.2011.05.013. Capanna F, De Cesare G, Miracola P, Sidoti G. Stage Evidence 2002 (Fotocopiatrice) Ricerche per il Restauro di una Gomma Poliuretanica. In: Rullo D, editor. Lo stato dell’arte 7: VII Congresso nazionale IGIIC. Firenze: Nardini; 2009. p. 3–12. Lazzari M, Ledo-Suárez A, López T, Scalarone D, López-Quintela MA. Plastic matters: an analytical procedure to evaluate the degradability of contemporary works of art. Anal Bioanal Chem. 2011;399(9):2939–48. https://doi.org/10.1007/s00216-011-4664-5. Hashimoto T, Kobayashi H, Kato N. Educational system with the android robot SAYA and field trial. In: Lin C-T, editor. 2011 IEEE International Conference on Fuzzy Systems (FUZZ). Taipei: Piscataway, NJ IEEE 2011; 2011. p. 766–771. https://doi.org/10.1109/FUZZY.2011.6007430. Oleari C. Standard colorimetry: definitions, algorithms and software. Hoboken: Wiley; 2016. McLaren K. XIII-The development of the CIE 1976 (L*a*b*) uniform-colour space and colour difference formula. J Soc Dye Colour. 1976;92:338–434. https://doi.org/10.1111/j.1478-4408.1976.tb03301.x. Tsuge S, Ohtani H, Watanabe C. Pyrolysis-GC/MS data book of synthetic polymers. Pyrograms, thermograms and MS of pyrolyzates. The Netherlands: Elsevier; 2011. FrontierLab. Multi-functional Pyrolyzer® Technical Note. Operational Principle of MicroJet Cryo Trap (MJY-1030E). 2021. https://www.frontier-lab.com/assets/file/technical-note/PYT-019E.pdf. Accessed 22 Apr 2021. Izzo F, Ferriani B, Annicchiarico S, Biocca P, van Keulen H, Zendri E. The use of polyurethane foam in contemporary Italian design: Case studies from the Triennale Design Museum in Milan. In: Bechthold T, editor. Future talks 013: technology and conservation of modern materials in design. Munich: Die Neue Sammlung; 2015. p. 129–37. Nicolaus K. Handbuch der Gemälderestaurierung. Köln: Könemann Verlagsgesellschaft; 1998. Pataki A. Remoistenable tissue preparation and its practical aspects. Restaurator. 2009;30:51–69. https://doi.org/10.1515/rest.004. Pataki-Hundt A, Walter C. Comparison of lightweight Japanese tissues for overall stabilization of documents damaged by iron gall ink corrosion and an alternative to silk screen frames. Restaurator. 2018;39(2):109–27. https://doi.org/10.1515/res-2018-0007. Hansen A, Lippert T, Russo A. Restauro di due maschere in lattice facenti parte l’opera d’arte “Uncolor becomes alter ego #2’’ di Haim Steinbach. In: Rullo D, editor. Lo Stato dell’Arte: XIV Congresso Nazionale IGIIC. Firenze: Nardini; 2016. p. 141–6. Böhme N, Anders M, Reichelt T, Schuhmann K, Bridarolli A, Chevalier A. New treatments for canvas consolidation and conservation. Herit Sci. 2020;8:16. https://doi.org/10.1186/s40494-020-0362-y. Kremer 2020. Information on synthetic resin dispersions. https://www.kremer-pigmente.com/media/pdf/75000-76806uebersicht.pdf. Accessed 08 Nov 2020. Kremer 2020: Information on polyurethane-dispersion 52. https://www.kremer-pigmente.com/media/pdf/76805.pdf. Accessed 29 Nov 2020. Wilhelm C, Rivaton A, Gardette J-L. Infrared analysis of the photochemical behavior of segmented polyurethanes: 3 Aromatic diisocyanate based polymers. Polymer. 1998;39:1221–32. https://doi.org/10.1016/S0032-3861(97)00353-4. Davies P, Evrard G. Accelerated ageing of polyurethanes for marine applications. Polym Degrad Stabil. 2007;92(8):1455–64. https://doi.org/10.1016/j.polymdegradstab.2007.05.016. Shashoua Y. Conservation of plastics. Materials science, degradation and preservation. Oxford: BH; 2008. Balcar N, Lattuati-Derieux A, Vila A. Appendix 3: analysis of degradation products found during surveys of three French collections. In: Lavédrine B, Fourbier A, Martin G, editors. Preservation of plastic artefacts in museum collections. Paris: Comité Des Travaux Historiques Et Scientifiques; 2012. p. 302–8. Porto S, Fleury PA, Damen TC. Raman Spectra of TiO2, MgF2, ZnF2, FeF2 and MnF2. Phys Rev. 1967;154(2):522–6. https://doi.org/10.1103/PhysRev.154.522. Ohsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase, TiO2. J Raman Spectrosc. 1978;7:321–4. https://doi.org/10.1002/jrs.1250070606. Balachandran U, Eror NG. Raman Spectra of titanium dioxide. J Solid State Chem. 1982;42(3):276–82. https://doi.org/10.1016/0022-4596(82)90006-8. Ma HL, Yang JY, Dai Y, Zhang YB, Lu B, Ma GH. Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl Surf Sci. 2007;253(18):7497–500. https://doi.org/10.1016/j.apsusc.2007.03.047. Vielee RC, Haney TV. Polyurethanes. In: Webber TG, editor. Coloring of plastics. New York: Wiley; 1979. p. 191–204. Pappas SP, Fischer RM. Photo-chemistry of pigments: studies on the mechanism of chalking. J Paint Technol. 1974;46(599):65–72. Allen NS. Photofading and light stability of dyed and pigmented polymers. Polym Degrad Stabil. 1994;44(3):357–74. https://doi.org/10.1016/0141-3910(94)90095-7. Allen NS, Katami H. Comparison of various thermal and photoageing conditions on the oxidation of titanium dioxide pigmented linear low density polyethylene films. Polym Degrad Stabil. 1996;52:311–20. https://doi.org/10.1016/0141-3910%2896%2900031-6. Cho S, Choi W. Solid-phase photocatalytic degradation of PVC-TiO2 polymer composites. J Photochem Photobiol A: Chem. 2001;143(2–3):221–8. https://doi.org/10.1016/S1010-6030(01)00499-3. Worsley DA, Searle JR. Photoactivity test for TiO2 pigment photocatalysed polymer degradation. Mater Sci Technol. 2002;18(6):681–4. https://doi.org/10.1179/026708302225003541. Jin CQ, Christensen PA, Egerton TA, White JR. Rapid measurement of photocatalytic oxidation of poly(vinyl chloride) by in situ FTIR spectrometry of evolved CO2. Mater Sci Technol. 2006;22(8):908–14. https://doi.org/10.1179/174328406X91159. Holtzen DA, Reid AH. Titanium dioxide pigments. In: Charvat RA, editor. Coloring of plastics. 2nd ed. New Jersey: Wiley; 2004. p. 146–58. Chen XD, Wang Z, Liao ZF, Mai YL, Zhang MQ. Roles of anatase and rutile TiO2 nanoparticles in photo-oxidation of polyurethane. Polym Test. 2007;26(2):202–8. https://doi.org/10.1016/j.polymertesting.2006.10.002. EXSEAL 2020, security data sheet of pigment skin. http://www.exseal.jp/user_data/pdf/330002pigment-skin.pdf. Accessed 29 Apr 2020. Szycher M. Szycher’s handbook of polyurethanes. 2nd ed. New York: CRC Press; 2013. Hummel DO, Scholl F. Atlas of polymers and plastics analysis. Munich: Hanser; 1990. Lobo H, Bonilla JV. Handbook of plastics analysis. New York: Marcel Dekker; 2003. Silverstein RM, Webster FX, Klemie DJ. Spectrometric identification of organic compounds. 7th ed. New York: Wiley; 2005. Romanova V, Begishev V, Karmanov V, Kondyurin A, Maitz MF. Fourier transform Raman and Fourier transform infrared spectra of crosslinked polyurethane urea films synthetized from solutions. J Raman Spectrosc. 2002;33:769–77. https://doi.org/10.1002/jrs.914. Saviello D, Toniolo L, Goidanich S, Casadio F. Non-invasive identification of plastic materials in museum collections with portable FTIR reflectance spectroscopy: reference database and practical applications. Microchem J. 2016;124:868–77. https://doi.org/10.1016/j.microc.2015.07.016. Tabb DL, Koenig JL. Fourier transform infrared study of plasticized and unplasticized poly(vinyl chloride). Macromolecules. 1975;8(6):929–34. https://doi.org/10.1021/ma60048a043. Lavédrine B, Fournier A, Martin G. Preservation of plastic artefacts in museum collections. Paris: Comité Des Travaux Historiques Et Scientifiques; 2012. Dubelley F, Bas C, Planes E, Pons E, Yrieix B, Flandin L. Durability of polymer metal multilayer: focus on the adhesive chemical degradation. Front Chem. 2018;6:459. https://doi.org/10.3389/fchem.2018.00459. Skeist I. Handbook of adhesives. 3rd ed. NY: Van Nostrand Reinhold; 1990. Pocius A. Adhesion and adhesive technology—an introduction. Munich: Hanser; 1997. Correia CB, Bordado JC. Synthesis and characterization of new polyurethane adhesives. In: Vilarinho PM, editor. Materials science forum. Vol. 514. Aedermannsdorf: Trans Tech Publications; 2006, 834–847. https://doi.org/10.4028/www.scientific.net/MSF.514-516.843. Maruyama F, Fujimaki S, Sakamoto Y, Kudo Y, Miyagawa H. Screening of phthalates in polymer materials by pyrolysis GC/MS. Anal Sci. 2015;31(1):3–5. https://doi.org/10.2116/analsci.31.3. Kim JW, Kim Y-M, Moon HM, Hosaka A, Watanabe C, Teramae N, Choe EK, Myung S-W. Comparative study of thermal desorption and solvent extraction-gas chromatography-mass spectrometric analysis for the quantification of phthalates in polymers. J Chromatogr A. 2016;1451:33–40. https://doi.org/10.1016/j.chroma.2016.05.014. Neumann GM, Cullis PG, Derrick PJ. Mass spectrometry of polymers: polypropylene glycol. Z Naturforsch A. 1980;35(1):1090–7. https://doi.org/10.1515/zna-1980-1015. Allan D, Daly J, Liggat JJ. Thermal volatilisation analysis of TDI-based flexible polyurethane foam. Polym Degrad Stab. 2013;98(2):535–41. https://doi.org/10.1016/j.polymdegradstab.2012.12.002. Wei X-F, Linde E, Hedenqvist MS. Plasticiser loss from plastic or rubber products through diffusion and evaporation. NPJ Mater Degrad. 2019;3(1):1–8. https://doi.org/10.1038/s41529-019-0080-7. Stringer R, Labunska I, Santillo D, Johnston P, Siddorn J, Stephenson A. Concentrations of phthalate esters and identification of other additives in PVC children´s toys. Environ Sci Pollut R. 2000;7:27–36. https://doi.org/10.1065/espr199910.007. Royaux A, Fabre-Francke I, Balcar N, Barabant G, Bollard C, Lavédrine B, Cantin S. Aging of plasticized polyvinyl chloride in heritage collections: the impact of conditioning and cleaning treatments. Polym Degrad Stabil. 2017;37:109–21. https://doi.org/10.1016/j.polymdegradstab.2017.01.011. Oberbach K, Baur E, Brinkmann S, Schmachtenberg E. Saechling Kunststoff Taschenbuch. 29th ed. Munich: Hanser; 2004. Sargent M, Koenig JL, Maecker NL. FT-IR analysis of the photo-oxidation of styrene-acrylonitrile copolymers. Polym Degrad Stabil. 1993;39(3):355–66. https://doi.org/10.1016/0141-3910(93)90011-7. Davis P, Tiganis BE, Burn LS. The effect of photo-oxidative degradation on fracture in ABS pipe resin. Polym Degrad Stabil. 2004;84(2):232–42. https://doi.org/10.1016/j.polymdegradstab.2003.10.017. Murphy J. Additives for plastics handbook. 2nd ed. Oxford: Elsevier Science; 2001. Pritchard G. Plastics additives—an A-Z reference. London: Chapman & Hall; 1998.