Tính linh hoạt của di chuyển tế bào: một mô hình điều chỉnh đa quy mô

Journal of Cell Biology - Tập 188 Số 1 - Trang 11-19 - 2010
Peter Friedl1,2, Katarina Wolf1
1Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 HB Nijmegen, Netherlands 1
2Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine and Department of Dermatology, University of Würzburg, 97980 Würzburg, Germany 2

Tóm tắt

Di chuyển tế bào nằm ở trung tâm của việc hình thành, duy trì và tái tạo mô cũng như các tình trạng bệnh lý như xâm nhập ung thư. Các yếu tố cấu trúc và phân tử của cả môi trường mô và hành vi tế bào xác định xem các tế bào di chuyển một cách độc lập (thông qua các chế độ amip hoặc trung mô) hay một cách tập thể. Sử dụng một mô hình điều chỉnh đa tham số, chúng tôi mô tả cách kích thước, mật độ, độ cứng và phương hướng của ma trận ngoại bào cùng với các yếu tố xác định tế bào - bao gồm sự bám dính tế bào-tế bào và tế bào-ma trận, độ cực của cytoskeleton và độ cứng, và sự phân hủy protein quanh tế bào - tương tác lẫn nhau để kiểm soát chế độ di chuyển và hiệu quả. Các tế bào di động tích hợp các đầu vào biến đổi để điều chỉnh các tương tác giữa chúng với nhau và với ma trận nhằm xác định chế độ di chuyển. Mô hình điều chỉnh cung cấp một ma trận các tham số kiểm soát sự di chuyển của tế bào như một quá trình thích nghi và chuyển đổi lẫn nhau có liên quan đến các ngữ cảnh sinh lý và bệnh lý khác nhau.

Từ khóa


Tài liệu tham khảo

Alexander, 2008, Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model, Histochem. Cell Biol., 130, 1147, 10.1007/s00418-008-0529-1

Alt-Holland, 2008, E-cadherin suppression directs cytoskeletal rearrangement and intraepithelial tumor cell migration in 3D human skin equivalents, J. Invest. Dermatol., 128, 2498, 10.1038/jid.2008.102

Belletti, 2008, Stathmin activity influences sarcoma cell shape, motility, and metastatic potential, Mol. Biol. Cell., 19, 2003, 10.1091/mbc.E07-09-0894

Beningo, 2001, Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts, J. Cell Biol., 153, 881, 10.1083/jcb.153.4.881

Berton, 2009, The tumor suppressor functions of p27(kip1) include control of the mesenchymal/amoeboid transition, Mol. Cell. Biol., 29, 5031, 10.1128/MCB.00144-09

Blanchard, 2009, Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation, Nat. Methods., 6, 458, 10.1038/nmeth.1327

Blaser, 2006, Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow, Dev. Cell., 11, 613, 10.1016/j.devcel.2006.09.023

Carmona-Fontaine, 2008, Contact inhibition of locomotion in vivo controls neural crest directional migration, Nature., 456, 957, 10.1038/nature07441

Carragher, 2006, Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function, Oncogene., 25, 5726, 10.1038/sj.onc.1209582

Dahl, 2008, Nuclear shape, mechanics, and mechanotransduction, Circ. Res., 102, 1307, 10.1161/CIRCRESAHA.108.173989

Davis, 1981, Significance of cell-to cell contacts for the directional movement of neural crest cells within a hydrated collagen lattice, J. Embryol. Exp. Morphol., 63, 29

Dickinson, 1994, Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels, Ann. Biomed. Eng., 22, 342, 10.1007/BF02368241

Doyle, 2009, One-dimensional topography underlies three-dimensional fibrillar cell migration, J. Cell Biol., 184, 481, 10.1083/jcb.200810041

Even-Ram, 2005, Cell migration in 3D matrix, Curr. Opin. Cell Biol., 17, 524, 10.1016/j.ceb.2005.08.015

Ewald, 2008, Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis, Dev. Cell., 14, 570, 10.1016/j.devcel.2008.03.003

Fackler, 2008, Cell motility through plasma membrane blebbing, J. Cell Biol., 181, 879, 10.1083/jcb.200802081

Farooqui, 2005, Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement, J. Cell Sci., 118, 51, 10.1242/jcs.01577

Friedl, 2004, Prespecification and plasticity: shifting mechanisms of cell migration, Curr. Opin. Cell Biol., 16, 14, 10.1016/j.ceb.2003.11.001

Friedl, 2009, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol., 10, 445, 10.1038/nrm2720

Friedl, 2003, Proteolytic and non-proteolytic migration of tumour cells and leucocytes, Biochem. Soc. Symp., 70, 277, 10.1042/bss0700277

Friedl, 2003, Tumour-cell invasion and migration: diversity and escape mechanisms, Nat. Rev. Cancer., 3, 362, 10.1038/nrc1075

Friedl, 2008, Tube travel: the role of proteases in individual and collective cancer cell invasion, Cancer Res., 68, 7247, 10.1158/0008-5472.CAN-08-0784

Friedl, 2009, Proteolytic interstitial cell migration: a five-step process, Cancer Metastasis Rev., 28, 129, 10.1007/s10555-008-9174-3

Friedl, 1995, Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro, Cancer Res., 55, 4557

Friedl, 1998, CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion, Eur. J. Immunol., 28, 2331, 10.1002/(SICI)1521-4141(199808)28:08<2331::AID-IMMU2331>3.0.CO;2-C

Friedl, 1998, Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function, Microsc. Res. Tech., 43, 369, 10.1002/(SICI)1097-0029(19981201)43:5<369::AID-JEMT3>3.0.CO;2-6

Friedl, 2001, Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement, J. Leukoc. Biol., 70, 491, 10.1189/jlb.70.4.491

Gérard, 2007, The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization, J. Cell Biol., 176, 863, 10.1083/jcb.200608161

Giannone, 2006, Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways, Trends Cell Biol., 16, 213, 10.1016/j.tcb.2006.02.005

Grinnell, 2008, Fibroblast mechanics in three-dimensional collagen matrices, J. Bodyw. Mov. Ther., 12, 191, 10.1016/j.jbmt.2008.03.005

Gunzer, 1997, Migration of dendritic cells in 3D-collagen lattices. Visualisation of dynamic interactions with the substratum and the distribution of surface structures via a novel confocal reflection imaging technique, Adv. Exp. Med. Biol., 417, 97, 10.1007/978-1-4757-9966-8_16

Harley, 2008, Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions, Biophys. J., 95, 4013, 10.1529/biophysj.107.122598

Haston, 1982, Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices, J. Cell Biol., 92, 747, 10.1083/jcb.92.3.747

Hegerfeldt, 2002, Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies, Cancer Res., 62, 2125

Huttenlocher, 1996, Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity, J. Cell Biol., 134, 1551, 10.1083/jcb.134.6.1551

Isenberg, 2009, Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength, Biophys. J., 97, 1313, 10.1016/j.bpj.2009.06.021

Jiang, 2005, Cell-matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices, Mol. Biol. Cell., 16, 5070, 10.1091/mbc.E05-01-0007

Kaye, 1971, Cell replication of mesenchymal elements in adult tissues. I. The replication and migration of mesenchymal cells in the adult rabbit dermis, Anat. Rec., 169, 593, 10.1002/ar.1091690309

Keren, 2008, Mechanism of shape determination in motile cells, Nature., 453, 475, 10.1038/nature06952

Kulesa, 2000, In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches, Development., 127, 1161, 10.1242/dev.127.6.1161

Lammerding, 2006, Lamins A and C but not lamin B1 regulate nuclear mechanics, J. Biol. Chem., 281, 25768, 10.1074/jbc.M513511200

Lämmermann, 2009, Mechanical modes of ‘amoeboid’ cell migration, Curr. Opin. Cell Biol., 21, 636, 10.1016/j.ceb.2009.05.003

Lämmermann, 2008, Rapid leukocyte migration by integrin-independent flowing and squeezing, Nature., 453, 51, 10.1038/nature06887

Lauffenburger, 1996, Cell migration: a physically integrated molecular process, Cell., 84, 359, 10.1016/S0092-8674(00)81280-5

Li, 2005, Biochemistry and biomechanics of cell motility, Annu. Rev. Biomed. Eng., 7, 105, 10.1146/annurev.bioeng.7.060804.100340

Lo, 2000, Cell movement is guided by the rigidity of the substrate, Biophys. J., 79, 144, 10.1016/S0006-3495(00)76279-5

Maaser, 1999, Functional hierarchy of simultaneously expressed adhesion receptors: integrin alpha2beta1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices, Mol. Biol. Cell., 10, 3067, 10.1091/mbc.10.10.3067

Mc Henry, 2008, Raf kinase inhibitor protein positively regulates cell-substratum adhesion while negatively regulating cell-cell adhesion, J. Cell. Biochem., 103, 972, 10.1002/jcb.21470

McNally, 2002, Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation, Am. J. Pathol., 160, 621, 10.1016/S0002-9440(10)64882-1

Miron-Mendoza, 2008, Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices, Mol. Biol. Cell., 19, 2051, 10.1091/mbc.E07-09-0930

Nimnual, 2003, Redox-dependent downregulation of Rho by Rac, Nat. Cell Biol., 5, 236, 10.1038/ncb938

Nobes, 1999, Rho GTPases control polarity, protrusion, and adhesion during cell movement, J. Cell Biol., 144, 1235, 10.1083/jcb.144.6.1235

Palamidessi, 2008, Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration, Cell., 134, 135, 10.1016/j.cell.2008.05.034

Palecek, 1997, Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness, Nature., 385, 537, 10.1038/385537a0

Paluch, 2006, Dynamic modes of the cortical actomyosin gel during cell locomotion and division, Trends Cell Biol., 16, 5, 10.1016/j.tcb.2005.11.003

Paluch, 2006, Cracking up: symmetry breaking in cellular systems, J. Cell Biol., 175, 687, 10.1083/jcb.200607159

Paňková, 2009, The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells, Cell. Mol. Life Sci.

Parri, 2009, EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style, Cancer Res., 69, 2072, 10.1158/0008-5472.CAN-08-1845

Paszek, 2005, Tensional homeostasis and the malignant phenotype, Cancer Cell., 8, 241, 10.1016/j.ccr.2005.08.010

Petrie, 2009, Random versus directionally persistent cell migration, Nat. Rev. Mol. Cell Biol., 10, 538, 10.1038/nrm2729

Peyton, 2008, The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system, Biomaterials., 29, 2597, 10.1016/j.biomaterials.2008.02.005

Piperno, 1987, Microtubules containing acetylated alpha-tubulin in mammalian cells in culture, J. Cell Biol., 104, 289, 10.1083/jcb.104.2.289

Provenzano, 2008, Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization, Biophys. J., 95, 5374, 10.1529/biophysj.108.133116

Rhee, 2006, P21-activated kinase 1: convergence point in PDGF- and LPA-stimulated collagen matrix contraction by human fibroblasts, J. Cell Biol., 172, 423, 10.1083/jcb.200505175

Ridley, 2003, Cell migration: integrating signals from front to back, Science., 302, 1704, 10.1126/science.1092053

Sabeh, 2004, Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP, J. Cell Biol., 167, 769, 10.1083/jcb.200408028

Sabeh, 2009, Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited, J. Cell Biol., 185, 11, 10.1083/jcb.200807195

Sahai, 2003, Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis, Nat. Cell Biol., 5, 711, 10.1038/ncb1019

Sahai, 2007, Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility, J. Cell Biol., 176, 35, 10.1083/jcb.200605135

Sanz-Moreno, 2009, Rho-GTPase signaling drives melanoma cell plasticity, Cell Cycle., 8, 1484, 10.4161/cc.8.10.8490

Sanz-Moreno, 2008, Rac activation and inactivation control plasticity of tumor cell movement, Cell., 135, 510, 10.1016/j.cell.2008.09.043

Sawada, 2006, Force sensing by mechanical extension of the Src family kinase substrate p130Cas, Cell., 127, 1015, 10.1016/j.cell.2006.09.044

Schober, 2007, Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics, J. Cell Biol., 176, 667, 10.1083/jcb.200608010

Shoulders, 2009, Collagen structure and stability, Annu. Rev. Biochem., 78, 929, 10.1146/annurev.biochem.77.032207.120833

Smith, 2007, Neutrophil traction stresses are concentrated in the uropod during migration, Biophys. J., 92, L58, 10.1529/biophysj.106.102822

Tamada, 2004, Activation of a signaling cascade by cytoskeleton stretch, Dev. Cell., 7, 709, 10.1016/j.devcel.2004.08.021

Teddy, 2004, In vivo evidence for short- and long-range cell communication in cranial neural crest cells, Development., 131, 6141, 10.1242/dev.01534

Thiery, 2002, Epithelial-mesenchymal transitions in tumour progression, Nat. Rev. Cancer., 2, 442, 10.1038/nrc822

Ulrich, 2009, The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells, Cancer Res., 69, 4167, 10.1158/0008-5472.CAN-08-4859

Vaughan, 1966, Movements of epithelial cell sheets in vitro, J. Cell Sci., 1, 407, 10.1242/jcs.1.4.407

Vitorino, 2008, Modular control of endothelial sheet migration, Genes Dev., 22, 3268, 10.1101/gad.1725808

Wolf, 2009, Mapping proteolytic cancer cell-extracellular matrix interfaces, Clin. Exp. Metastasis., 26, 289, 10.1007/s10585-008-9190-2

Wolf, 2003, Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis, J. Cell Biol., 160, 267, 10.1083/jcb.200209006

Wolf, 2003, Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases, Blood., 102, 3262, 10.1182/blood-2002-12-3791

Wolf, 2007, Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion, Nat. Cell Biol., 9, 893, 10.1038/ncb1616

Wolf, 2009, Collagen-based cell migration models in vitro and in vivo, Semin. Cell Dev. Biol., 10.1016/j.semcdb.2009.08.005

Yamada, 2003, Dimensions and dynamics in integrin function, Braz. J. Med. Biol. Res., 36, 959, 10.1590/S0100-879X2003000800001

Yoshida, 2006, Dissection of amoeboid movement into two mechanically distinct modes, J. Cell Sci., 119, 3833, 10.1242/jcs.03152

Zaman, 2006, Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis, Proc. Natl. Acad. Sci. USA., 103, 10889, 10.1073/pnas.0604460103

Zhang, 2006, Interactions of primary fibroblasts and keratinocytes with extracellular matrix proteins: contribution of alpha2beta1 integrin, J. Cell Sci., 119, 1886, 10.1242/jcs.02921

Zhang, 2008, Talin depletion reveals independence of initial cell spreading from integrin activation and traction, Nat. Cell Biol., 10, 1062, 10.1038/ncb1765