Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions

American Association for the Advancement of Science (AAAS) - Tập 311 Số 5758 - Trang 189-193 - 2006
Ekmel Özbay1
1Nanotechnology Research Center, Bilkent University, Bilkent, Ankara 06800 Turkey.

Tóm tắt

Electronic circuits provide us with the ability to control the transport and storage of electrons. However, the performance of electronic circuits is now becoming rather limited when digital information needs to be sent from one point to another. Photonics offers an effective solution to this problem by implementing optical communication systems based on optical fibers and photonic circuits. Unfortunately, the micrometer-scale bulky components of photonics have limited the integration of these components into electronic chips, which are now measured in nanometers. Surface plasmon–based circuits, which merge electronics and photonics at the nanoscale, may offer a solution to this size-compatibility problem. Here we review the current status and future prospects of plasmonics in various applications including plasmonic chips, light generation, and nanolithography.

Từ khóa


Tài liệu tham khảo

M. J. Kobrinskyet al., Intel Technol. J.8, 129 (2004).

M. Born E. Wolf Principles of Optics (Cambridge Univ. Press Cambridge 1999).

J. D. Joannopoulos R. D. Meade J. N. Winn Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press Princeton 1995).

H. Raether Surface Plasmons (Springer Berlin 1988).

10.1038/nature01937

S. A. Maier, H. A. Atwater, J. Appl. Phys.98, 011101 (2005).

P. Berini, R. Charbonneau, N. Lahoud, G. Mattiussi, J. Appl. Phys.98, 043109 (2005).

J. R. Krenn, J. C. Weeber, Philos. Trans. R. Soc. London Ser. A362, 739 (2004).

S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, O. Painter, Appl. Phys. Lett.86, 071103 (2005).

D. Pileet al., Appl. Phys. Lett.87, 061106 (2005).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, Phys. Rev. Lett.95, 046802 (2005).

M. Hochberg, T. Baehr-Jones, C. Walker, A. Scherer, Opt. Exp.12, 5481 (2004).

M. P. Nezhad, K. Tetz, Y. Fainman, Opt. Exp.12, 4072 (2004).

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, M. Soljacic, Phys. Rev. Lett.95, 063901 (2005).

W. Nomura, M. Ohtsu, T. Yatsui, Appl. Phys. Lett.86, 181108 (2005).

L. Yinet al., Nano Lett.5, 1399 (2005).

A. V. Krasavin, A. V. Zayats, N. I. Zheludev, J. Opt. Pure Appl. Opt.7, 85 (2005).

10.1126/science.1102992

S. Nakamura G. Fasol The Blue Laser Diode: GaN-Based Light Emitting Diode and Lasers (Springer Berlin 1997).

10.1126/science.1108712

J. Vuckovic, M. Loncar, A. Scherer, IEEE J. Quant. Electr.36, 1131 (2000).

K. Okamoto et al., Appl. Phys. Lett.87, 071102 (2005).

10.1063/1.1772516

C. Liu, V. Kamaev, Z. V. Vardenya, Appl. Phys. Lett.86, 143501 (2005).

J. Hashizume, F. Koyama, Opt. Exp.12, 6391 (2004).

10.1038/35570

T. Thioet al., Opt. Lett.26, 1972 (2004).

H. J. Lezec, T. Thio, Opt. Exp.12, 3629 (2004).

10.1126/science.1098999

10.1103/PhysRevLett.92.107401

A. P. Hibbins, B. R. Evans, J. R. Sambles, Science308, 670 (2004).

S. Akarca-Biyikli, I. Bulu, E. Ozbay, Appl. Phys. Lett.85, 1098 (2004).

M. Berueteet al., Opt. Lett.12, 3629 (2004).

H. Caglayan, I. Bulu, E. Ozbay, Opt. Exp.13, 1666 (2005).

10.1126/science.1071895

H. Cao, A. Nahata, Opt. Exp.12, 1004 (2004).

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, Phys. Rev. Lett.93, 256804 (2005).

10.1063/1.1760221

P. G. Kik, S. A. Maier, H. A. Atwater, Phys. Rev. B69, 045418 (2004).

10.1103/PhysRevLett.85.3966

10.1126/science.1108759

D. O. S. Melville, R. J. Blaikie, Opt. Exp.13, 2127 (2005).

This work was supported by the projects EU–DALHM EU–NOE–METAMORPHOSE EU–NOE–PHOREMOST and TUBITAK-104E090. E.O. also acknowledges partial support from the Turkish Academy of Sciences.