Plasmodium yoelii infection inhibits murine leukaemia WEHI-3 cell proliferation in vivo by promoting immune responses
Tóm tắt
Leukaemia is a malignant leukocyte disorder with a high fatality rate, and current treatments for this disease are unsatisfactory. Therefore, new therapeutic strategies for leukaemia must be developed. Malaria parasite infection has been shown to be effective at combating certain neoplasms in animal experiments. This study is to demonstrate the anti-leukaemia activity of malaria parasite Plasmodium yoelii (P. yoelii) infection,. In this study, the proportion of CD3, CD19, CD11b and Mac-3 cells was analysed by flow cytometry; the levels of IFN-γ and TNF-α in individual serum samples were measured by enzyme-linked immunosorbent assay, and the phagocytic activity of macrophages and natural killer (NK) cell activity were measured by flow cytometry. We found that P. yoelii infection significantly attenuated the growth of WEHI-3 cells in mice. In addition, tumor cell infiltration into the murine liver and spleen was markedly reduced. We also demonstrated that malaria parasite infection elicited anti-leukaemia activity by promoting immune responses, including increasing the surface markers of T cells (CD3) and B cells (CD19); decreasing the surface markers of monocytes (CD11b) and macrophages (Mac-3); inducing the secretion of IFN-γ and TNF-α; and increasing NK cell and macrophage activity. Malaria parasite infection significantly decreases the number of myeloblasts and inhibits neoplasm proliferation in mice. In addition, malaria parasite infection inhibits murine leukaemia by promoting immune responses.
Tài liệu tham khảo
Han J, Liu J, Zheng X, Ma Y, Xiao Q, Ding Y. Caring in nursing: investigating the meaning of caring from the perspective of Chinese children living with leukemia. Int J Nurs Sci. 2014;1:34–41.
Landrigan PJ. Childhood leukemias. N Engl J Med. 1995;333:1286.
Mel’nikov VG, Fierro Velasko FH, Dobrovinskaya OR. Suppression of growth and metastasizing of T-cell lymphoma in mice infected with American trypanosomiasis at different stages of experimental infection. Bull Exp Biol Med. 2004;137:475–8.
Pyo KH, Jung BK, Chai JY, Shin EH. Suppressed CD31 expression in sarcoma-180 tumors after injection with Toxoplasma gondii lysate antigen in BALB/c mice. Korean J Parasitol. 2010;48:171–4.
Duan L, Li J, Cheng B, Lv Q, Gong PT, Su LB, et al. Identification of a novel gene product expressed by trichinella spiralis that binds antiserum to Sp2/0 myeloma cells. Vet Parasitol. 2013;194:183–5.
Wang XL, Fu BQ, Yang SJ, Wu XP, Cui GZ, Liu MF, et al. Trichinella spiralis--a potential anti-tumor agent. Vet Parasitol. 2009;159:249–52.
Darani HY, Shirzad H, Mansoori F, Zabardast N, Mahmoodzadeh M. Effects of Toxoplasma gondii and toxocara canis antigens on WEHI-164 fibrosarcoma growth in a mouse model. Korean J Parasitol. 2009;47:175–7.
Pidherney MS, Alizadeh H, Stewart GL, McCulley JP, Niederkorn JY. In vitro and in vivo tumoricidal properties of a pathogenic/free-living amoeba. Cancer Lett. 1993;72:91–8.
Chen L, He Z, Qin L, Li Q, Shi X, Zhao S, et al. Antitumor effect of malaria parasite infection in amurine Lewis lung cancer model through induction of innate and adaptive immunity. PLoS One. 2011;6:e24407.
Warner NL, Moore MA, Metcalf D. A transplantable myelomonocytic leukemiain BALB-c mice: cytology, karyotype, and muramidase content. J Natl Cancer Inst. 1969;43:963–82.
Silverberg E. Cancer statistics, 1983. CA Cancer J Clin. 1983;33:9–25.
He Q, Na X. The effects and mechanisms of a novel 2-aminosteroid on murine WEHI-3B leukemia cells in vitro and in vivo. Leuk Res. 2001;25:455–61.
Alabsi AM, Ali R, Ideris A, Omar AR, Bejo MH, Yusoff K, et al. Anti-leukemic activity of Newcastle disease virus strains AF2240 and v4-UPM inmurine myelomonocytic leukemia in vivo. Leuk Res. 2012;36:634–45.
Chung JG, Yang JS, Huang LJ, Lee FY, Teng CM, Tsai SC, et al. Proteomic approach to studying the cytotoxicity of YC-1 on U937 leukemia cells and antileukemia activity in orthotopic model of leukemia mice. Proteomics. 2007;7:3305–17.
Lin SY, Sheen LY, Chiang BH, Yang JS, Pan JH, Chang YH, et al. Dietary effect of Antrodia camphorate extracts on immune responses in WEHI-3 leukemia BALB/c mice. Nutr Cancer. 2010;62:593–600.
Hasserjian RP. Acute myeloid leukemia: advances in diagnosis and classification. Int J Lab Hematol. 2013;35:358–66.
Darani HY, Yousefi M. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy. Future Oncol. 2012;8:1529–35.
Soares PI, Ferreira IM, Igreja RA, Novo CM, Borges JP. Application of hyperthermia for cancer treatment: recent patents review. Recent Pat Anticanc Drug Discov. 2012;7:64–73.
Day JF, Edman JD. The importance of disease induced changes in mammalian body temperature to mosquito blood feeding. Physiol. 1984;77:447–52.
Robert LS. Foundations of parasitology. 8th ed. Boston: McGraw-Hill Company; 2009. p. 159.
Miyakoda M, Kimura D, Yuda M, Chinzei Y, Shibata Y, Honma K, et al. Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol. 2008;181:1420–8.
Sardinha LR, D'Império Lima MR, Alvarez JM. Influence of the polyclonal activation induced by Plasmodium chabaudi on ongoing OVA-specific B- and T-cell responses. Scand J Immunol. 2002;56:408–16.
Lu CC, Yang JS, Chiang JH, Hour MJ, Lin KL, Lin JJ, et al. Novel quinazolinone MJ-29 triggers endoplasmic reticulum stress and intrinsic apoptosis in murine leukemia WEHI-3 cells and inhibits leukemic mice. PLoS One. 2012;7:e36831.
Yu FS, Wu CC, Chen CT, Huang SP, Yang JS, Hsu YM, et al. Diallyl sulfide inhibits murine WEHI-3 leukemia cells in BALB/c mice in vitro and in vivo. Hum Exp Toxicol. 2009;28:785–90.
Lichtenegger FS, Schnorfeil FM, Hiddemann W, Subklewe M. Current strategies in immunotherapy for acute myeloid leukemia. Immunotherapy. 2013;5:63–78.
Mizukami M, Hanagiri T, Shigematsu Y, Baba T, Fukuyama T, Nagata Y, et al. Effect of IgG produced by tumor-infiltrating B lymphocytes on lung tumor growth. Anticancer Res. 2006;26:1827–31.
Yasuda M, Takenoyama M, Obata Y, Sugaya M, So T, Hanagiri T, et al. Tumor-infiltrating B lymphocytes as a potential source of identifying tumor antigen in human lung cancer. Cancer Res. 2002;62:1751–6.
Bolkun L, Lemancewicz D, Jablonska E, Szumowska A, Bolkun-Skornicka U, et al. The impact of TNF superfamily molecules on overall survival in acute myeloid leukaemia: correlation with biological and clinical features. Ann Hematol. 2015;94:35–43.
Van den Heuvel MM, Burgers SA, van Zandwijk N. Immunotherapy in non-small-cell lung carcinoma: from inflammation to vaccination. Clin Lung Cancer. 2009;10:99–105.
Zhao Q, Tong L, He N, Feng G, Leng L, Sun W, et al. IFN-γ mediates graft-versus- breast cancer effects via enhancing cytotoxic T lymphocyte activity. Exp Ther Med. 2014;8:347–54.
Jeannin P, Duluc D, Delneste Y. IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-γ. Immunotherapy. 2011;3:23–6.
Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–7.
Tsou MF, Peng CT, Shih MC, Yang JS, Lu CC, Chiang JH, et al. Benzyl isothiocyanate inhibits murine WEHI-3 leukemia cells in vitro and promotes phagocytosisin BALB/c mice in vivo. Leuk Res. 2009;33:1505–11.
Cui Y, Liu J, Wu Y, Ma SH, Cao YM. Research of suface molecules related molecules related macrophage phagocytosis from Plasmodium Yoelii infected DBA/2 mice. Acta Parasitol Med Entomol Sin. 2007;14:71–5.
Stevenson MM, Riley EM. Innate immunity to malaria. Nat Rev Immunol. 2004;4:169–80.