Biến thể gen kháng thuốc đa dạng của Plasmodium falciparum tại miền Bắc Nigeria: ý nghĩa đối với việc sử dụng tiếp tục artemether-lumefantrine trong khu vực

Malaria Journal - Tập 19 Số 1 - 2020
A. K. Adamu1, Mahmoud Suleiman Jada2, Hauwa Mohammed Sani Haruna3, Bassa Obed Yakubu1, Mohammed Ibrahim1, E.O. Balogun1, Takaya Sakura4, Daniel Ken Inaoka4, Kiyoshi Kita4, Kenji Hirayama5, Richard Culleton6, Mohammed Nasir Shuaibu1
1Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
2Department of Biochemistry, Modibbo Adama University of Technology Yola, Yola, Nigeria
3School of Applied Science, Kaduna Polytechnic, Kaduna, Nigeria
4Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
5Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
6Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Ehime, Japan

Tóm tắt

Tóm tắt Thông tin nền

Phân tích về biến thể đơn nucleotide (SNPs) trong các gen liên quan đến kháng thuốc là một chiến lược thường được sử dụng để giám sát tình trạng kháng thuốc chống sốt rét trong các quần thể ký sinh trùng. Nghiên cứu hiện tại được thiết kế và thực hiện nhằm cung cấp dữ liệu dịch tễ học di truyền về sự lưu hành của các SNP N86Y-Y184F-D1246Y trong Plasmodium falciparum gen kháng thuốc đa dạng 1 (pfmdr1) tại vùng nóng sốt rét ở miền Bắc Nigeria.

Phương pháp

Các mẫu máu dương tính với Plasmodium falciparum đã được thu thập từ 750 bệnh nhân có triệu chứng từ bốn bang (Kano, Kaduna, Yobe và Adamawa) ở miền Bắc Nigeria, và được genotyped thông qua chu trình giải trình tự BigDye (v3.1) để xác định sự hiện diện của ba SNP trong pfmdr1. Các SNP trong pfmdr1 được sử dụng để xây dựng các kiểu gen NYD, NYY, NFY, NFD, YYY, YYD, YFD và YFY, và toàn bộ dữ liệu được phân tích bằng kiểm định Chi bình phương của Pearson và kiểm định chính xác Fisher (FE).

Kết quả

Sự lưu hành của alen 86Y của pfmdr1 là cao nhất tại Kaduna (12.50%, 2=10.50, P=0.02), trong khi alen 184F cao nhất ở Kano (73.10%, 2=13.20, P=0.00), và alen 1246Y của pfmdr1 cao nhất tại Yobe (5.26%, 2=9.20, P=0.03). Kiểu gen NFD có sự lưu hành cao nhất là 69.81% tại Kano (2=36.10, P=0.00), tiếp theo là NYD với tỷ lệ lưu hành 49.00% tại Adamawa, và sau đó là YFD với tỷ lệ lưu hành 11.46% tại Kaduna. Kiểu gen YYY không được quan sát thấy ở bất kỳ bang nào trong số các bang đã nghiên cứu.

Kết luận

Nghiên cứu hiện tại gợi ý rằng các chủng P. falciparum có độ nhạy giảm đối với thành phần lumefantrine của AL tồn tại ở miền Bắc Nigeria và chiếm ưu thế ở khu vực Tây Bắc.

Từ khóa


Tài liệu tham khảo

Cravo P, Napolitano H, Culleton R. How genomics is contributing to the fight against artemisinin-resistant malaria parasites. Acta Trop. 2015;148:1–7.

Blasco B, Leroy D, Fidock DA, BenjaminBlasco DL. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017;23:917–28.

White N. Antimalarial drug resistance and combination chemotherapy. Biol Sci. 1999;354:739–49.

Bopp SER, Manary MJ, Bright AT, Johnston GL, Dharia NV, Luna FL, et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 2013;9:e1003293.

Culleton R, Abkallo HM. Malaria parasite genetics: doing something useful. Parasitol Int. 2015;64:244–53.

Veiga MI, Dhingra SK, Henrich PP, Straimer J, Gnädig N, Uhlemann AC, et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun. 2016;77:11553.

Okell LC, Reiter LM, Ebbe LS, Baraka V, Bisanzio D, Watson OJ, et al. Emerging implications of policies on malaria treatment: Genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether–lumefantrine and artesunate–amodiaquine in Africa. BMJ Glob Health. 2018;3:e000999.

Ariey F, Fandeur T, Durand R, Randrianarivelojosia M, Jambou R, Legrand E, et al. Invasion of Africa by a single pfcrt allele of South East Asian type. Malar J. 2006;5:34.

Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J. 2016;36:1–6.

Pearce RJ, Pota H, Evehe MSB, Bâ EH, Mombo-Ngoma G, Malisa AL, et al. Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. PLoS Med. 2009;6:e1000055.

Foote SJ, Kyle DE, Martin RK, Oduola AMJ, Forsyth K, Kemp DJ, et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature. 1990;345:255–8.

Ferreira PE, Holmgren G, Veiga MI, Uhlén P, Kaneko A, Gil JP. PfMDR1: mechanisms of transport modulation by functional polymorphisms. PLoS One. 2007;6:e23875.

Reiling SJ, Rohrbach P. Monitoring PfMDR1 transport in Plasmodium falciparum. Malar J. 2015;14:270.

Das S, Tripathy S, Chattopadhayay S, Das B, Kar Mahapatra S, Hati AK, et al. Progressive increase in point mutations associates chloroquine resistance: even after withdrawal of chloroquine use in India. Int J Parasitol Drugs Drug Resist. 2017;7:251–61.

Sekihara M, Tachibana SI, Yamauchi M, Yatsushiro S, Tiwara S, Fukuda N, et al. Lack of significant recovery of chloroquine sensitivity in Plasmodium falciparum parasites following discontinuance of chloroquine use in Papua New Guinea. Malar J. 2018;17:434.

Duraisingh MT, Cowman AF. Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop. 2005;94:181–90.

Folarin OA, Bustamante C, Gbotosho GO, Sowunmi A, Zalis MG, Oduola AMJ, et al. In vitro amodiaquine resistance and its association with mutations in pfcrt and pfmdr1 genes of Plasmodium falciparum isolates from Nigeria. Acta Trop. 2011;120:224–30.

Tinto H, Guekoun L, Zongo I, Guiguemdé RT, D’Alessandro U, Ouédraogo JB. Chloroquine-resistance molecular markers (Pfcrt T76 and Pfmdr-1 Y86) and amodiaquine resistance in Burkina Faso. Trop Med Int Health. 2008;13:238–40.

Humphreys GS, Merinopoulos I, Ahmed J, Whitty CJM, Mutabingwa TK, Sutherland CJ, et al. Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother. 2007;51:991–7.

Lekostaj JK, Natarajan JK, Paguio MF, Wolf C, Roepe PD. Photoaffinity labeling of the Plasmodium falciparum chloroquine resistance transporter with a novel perfluorophenylazido chloroquine. Biochemistry. 2008;47:10394–406.

Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403:906–9.

Mwai L, Ochong E, Abdirahman A, Kiara SM, Ward S, Kokwaro G, et al. Chloroquine resistance before and after its withdrawal in Kenya. Malar J. 2009;8:106.

Pickard AL, Wongsrichanalai C, Purfield A, Kamwendo D, Emery K, Zalewski C, et al. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob Agents Chemother. 2003;47:2418–23.

Mbogo GW, Nankoberanyi S, Tukwasibwe S, Baliraine FN, Nsobya SL, Conrad MD, et al. Temporal changes in prevalence of molecular markers mediating antimalarial drug resistance in a high malaria transmission setting in Uganda. Am J Trop Med Hyg. 2014;91:54–61.

Baliraine FN, Rosenthal PJ. Prolonged selection of pfmdr1 polymorphisms after treatment of falciparum malaria with artemether-lumefantrine in Uganda. J Infect Dis. 2011;204:1120–4.

Sondo P, Derra K, Diallo Nakanabo S, Tarnagda Z, Kazienga A, Zampa O, et al. Artesunate-amodiaquine and artemether-lumefantrine therapies and selection of Pfcrt and Pfmdr1 alleles in Nanoro, Burkina Faso. PLoS One. 2016;11:e0151565.

WHO. World Malaria Report 2018. Geneva: Word Health Organization; 2018.

Onwuemele A. An assesment of the spatial pattern of malaria infection in Nigeria. Int J Med Med Sci. 2014;6:80–6.

Houben CH, Fleischmann H, Gückel M. Malaria prevalence in north-eastern Nigeria: a cross-sectional study. Asian Pac J Trop Med. 2013;6:865–8.

Samdi LM, Ajayi JA, Oguche S, Ayanlade A. Seasonal variation of malaria parasite density in paediatric population of Northeastern Nigeria. Glob J Health Sci. 2012;4:103–9.

Okunlola OA, Oyeyemi OT. Spatio-temporal analysis of association between incidence of malaria and environmental predictors of malaria transmission in Nigeria. Sci Rep. 2019;9:17500.

MIS. Nigeria Malaria Indicator Survey 2015. Final Report. 2017.

Umar RA, Hassan SW, Ladan MJ, Jiya MN, Abubakar MK, Nataala U. The associaion of K76T mutation in Pfcrt gene and chloroquine treatment failure in uncomplicated Plasmodium falciparum malaria in a cohort of Nigerian children. J Appl Sci. 2007;7:3696–704.

Dokomajilar C, Nsobya SL, Greenhouse B, Rosenthal PJ, Dorsey G. Selection of Plasmodium falciparum pfmdr1 alleles following therapy with artemether-lumefantrine in an area of Uganda where malaria is highly endemic. Antimicrob Agents Chemother. 2006;50:1893–5.

Mawili-Mboumba DP, Kun JFJ, Lell B, Kremsner PG, Ntoumi F. Pfmdr1 alleles and response to ultralow-dose mefloquine treatment in gabonese patients. Antimicrob Agents Chemother. 2002;46:166–70.

Happi CT, Gbotosho GO, Folarin OA, Sowunmi A, Hudson T, O’Neil M, et al. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in nigerian children with uncomplicated falciparum malaria. Antimicrob Agents Chemother. 2009;53:888–95.

Oladipo OO, Wellington OA, Sutherland CJ. Persistence of chloroquine-resistant haplotypes of Plasmodium falciparum in children with uncomplicated Malaria in Lagos, Nigeria, four years after change of chloroquine as first-line antimalarial medicine. Diagn Pathol. 2015;10:41.

Dokunmu TM, Adjekukor CU, Yakubu OF, Bello AO, Adekoya JO, Akinola O, et al. Asymptomatic malaria infections and Pfmdr1 mutations in an endemic area of Nigeria. Malar J. 2019;18:218.

UNDP. National Human Development Report 2018: Achieving Human Development in North East Nigeria. National Human Development Report; 2018. Timor-Lest, pp 1–116.

Kavishe RA, Paulo P, Kaaya RD, Kalinga A, Van Zwetselaar M, Chilongola J, et al. Surveillance of artemether-lumefantrine associated Plasmodium falciparum multidrug resistance protein-1 gene polymorphisms in Tanzania. Malar J. 2014;13:264.

Lobo E, De Sousa B, Rosa S, Figueiredo P, Lobo L, Pateira S, et al. Prevalence of pfmdr1 alleles associated with artemether-lumefantrine tolerance/resistance in Maputo before and after the implementation of artemisinin-based combination therapy. Malar J. 2014;13:300.

Berzosa P, Esteban-Cantos A, García L, González V, Navarro M, Fernández T, et al. Profile of molecular mutations in pfdhfr, pfdhps, pfmdr1, and pfcrt genes of Plasmodium falciparum related to resistance to different anti-malarial drugs in the Bata District (Equatorial Guinea). Malar J. 2017;16:28.

Ljolje D, Dimbu PR, Kelley J, Goldman I, Nace D, Macaia A, et al. Prevalence of molecular markers of artemisinin and lumefantrine resistance among patients with uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2015. Malar J. 2018;17:84.

Ibraheem ZO, Abd Majid R, Noor SM, Sedik HM, Basir R. Role of different Pfcrt and Pfmdr-1 mutations in conferring resistance to antimalaria drugs in Plasmodium falciparum. Malar Res Treat. 2014;2014:950424.

Sisowath C, Strömberg J, Mårtensson A, Msellem M, Obondo C, Björkman A, Gil JP, et al. In vivo selection of Plasmodium falciparum pfmdr1 86 N Coding Alleles by Artemether-Lumefantrine (Coartem). J Infect Dis. 2005;191:1014–7.

Das S, Mahapatra SK, Tripathy S, Chattopadhyay S, Dash SK, Mandal D, et al. Double mutation in the pfmdr1 gene is associated with emergence of chloroquine-resistant Plasmodium falciparum malaria in Eastern India. Antimicrob Agents Chemother. 2014;58:5909–15.

Li J, Chen J, Xie D, Monte-Nguba S, Eyi JUM, Matesa RA, et al. High prevalence of pfmdr1 N86Y and Y184F mutations in Plasmodium falciparum isolates from Bioko island, Equatorial Guinea. Pathog Glob Health. 2014;108:339–43.

Srimuang K, Miotto O, Lim P, Fairhurst RM, Kwiatkowski DP, Woodrow CJ, et al. Analysis of anti-malarial resistance markers in pfmdr1 and pfcrt across Southeast Asia in the Tracking Resistance to Artemisinin Collaboration. Malar J. 2016;15:541.

Achieng AO, Muiruri P, Ingasia LA, Opot BH, Juma DW, Yeda R, et al. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by artemether-lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya. Int J Parasitol Drugs Drug Resist. 2015;5:92–9.

Moyeh MN, Njimoh DL, Evehe MS, Ali IM, Nji AM, Nkafu DN, et al. Effects of drug policy changes on evolution of molecular markers of Plasmodium falciparum resistance to chloroquine, amodiaquine, and sulphadoxine-pyrimethamine in the South West Region of Cameroon. Malar Res Treat. 2018;2018:7071383.

Taylor AR, Flegg JA, Holmes CC, Guérin PJ, Sibley CH, Conrad MD, et al. Artemether-lumefantrine and dihydroartemisinin-piperaquine exert inverse selective pressure on Plasmodium falciparum drug sensitivity-associated haplotypes in Uganda. Open Forum Infect Dis. 2017;4:ofw229.

Duah NO, Matrevi SA, De Souza DK, Binnah DD, Tamakloe MM, Opoku VS, et al. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy. Malar J. 2013;12:377.

Huang B, Wang Q, Deng C, Wang J, Yang T, Huang S, et al. Prevalence of CRT and mdr-1 mutations in Plasmodium falciparum isolates from Grande Comore island after withdrawal of chloroquine. Malar J. 2016;15:414.

Apinjoh TO, Mugri RN, Miotto O, Chi HF, Tata RB, Anchang-Kimbi JK, et al. Molecular markers for artemisinin and partner drug resistance in natural Plasmodium falciparum populations following increased insecticide treated net coverage along the slope of mount Cameroon: cross-sectional study. Infect Dis Poverty. 2017;6:136.

Tumwebaze P, Conrad MD, Walakira A, LeClair N, Byaruhanga O, Nakazibwe C, et al. Impact of antimalarial treatment and chemoprevention on the drug sensitivity of malaria parasites isolated from Ugandan children. Antimicrob Agents Chemother. 2015;59:3018–30.

Tumwebaze P, Tukwasibwe S, Taylor A, Conrad M, Ruhamyankaka E, Asua V, et al. Changing antimalarial drug resistance patterns identified by surveillance at three sites in Uganda. J Infect Dis. 2017;215:631–5.

Malmberg M, Ngasala B, Ferreira PE, Larsson E, Jovel I, Hjalmarsson A, et al. Temporal trends of molecular markers associated with artemether- lumefantrine tolerance/resistance in Bagamoyo district. Tanzania. Malar J. 2013;12:103.