Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:359–86. https://doi.org/10.1002/ijc.29210 .
Loizides-Mangold U. On the future of mass-spectrometry-based lipidomics. FEBS J. 2013;280(12):2817–29. https://doi.org/10.1111/febs.12202 .
Fhaner C, Liu S, Ji H, Simpson R, Reid G. Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem. 2012;84(21):8917–26. https://doi.org/10.1021/ac302154g .
Luo X, Cheng C, Tan Z, Li N, Tang M, Yang L, Cao Y. Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer. 2017;16(1):76. https://doi.org/10.1186/s12943-017-0646-3 .
Dueck D, Chan M, Tran K, Wong J, Jay F, Littman C, et al. The modulation of choline phosphoglyceride metabolism in human colon cancer. Mol Cell Biochem. 1996;162(2):97–103. https://doi.org/10.1007/BF00227535 .
Bandu R, Mok H, Kim K. Phospholipids as cancer biomarkers: mass spectrometry-based analysis. Mass Spectrom Rev. 2016; https://doi.org/10.1002/mas.21510 .
Braverman N, Moser A. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta. 2012;1822(9):1442–52. https://doi.org/10.1016/j.bbadis.2012.05.008 .
Snyder F. The ether lipid trail: a historical perspective. Biochim Biophys Acta. 1999;1436(3):265–78. https://doi.org/10.1016/S0005-2760(98)00172-6 .
Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol. 2016;12(11):668–79. https://doi.org/10.1038/nrendo.2016.98 .
Pourhoseingholi MA, Vahedi M, Baghestani AR. Burden of gastrointestinal cancer in Asia: an overview. Gastroenterol Hepatol Bed Bench. 2015;8(1):19–27.
World Health Organization. Cancer. [Internet], (2017) [cited 28 Aug 2017]. Available from: http://www.who.int/mediacentre/factsheets/fs297/en/ .
Yan G, Li L, Zhu B, Li Y. Lipidome in colorectal cancer. Oncotarget. 2016;7:33429–39. https://doi.org/10.18632/oncotarget.7960 .
Das V, Kalita J, Pal M. Predictive and prognostic biomarkers in colorectal cancer: a systematic review of recent advances and challenges. Biomed Pharmacother. 2017;87:8–19. https://doi.org/10.1016/j.biopha.2016.12.064 .
Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41:954–69. https://doi.org/10.1016/j.tibs.2016.08.010 .
Perrotti F, Rosa C, Cicalini I, P Sacchetta P, Del Boccio GD, Genovesi D, Pieragostino D. Advances in lipidomics for cancer biomarkers discovery. Inter J Mol Sci. 2016;17(12):1992. https://doi.org/10.3390/ijms17121992 .
Li M, Fan P, Wang Y. Lipidomics in health and diseases – beyond the analysis of lipids. Glycomics Lipidomics. 2015;5:1–15. https://doi.org/10.4172/2153-0637.1000126 .
Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. Biochim Biophys Acta. 2011;1811(11):637–47. https://doi.org/10.1016/j.bbalip.2011.06.009 .
Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem. 2014;83(1):79–98. https://doi.org/10.1146/annurev-biochem-060713-035324 .
Lipid Maps Lipidomics Gateway: Home [Internet]. Lipidmaps.org . (2017) [cited 20 May 2017]. Available from: http://www.lipidmaps.org .
Vance JE. Membrane lipid biosynthesis. Wiley Online Library, (2001). Available from: http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001391/abstract .
Hossain M, Mineno K, Katafuchi T. Neuronal orphan G-protein coupled receptor proteins mediate Plasmalogens-induced activation of ERK and Akt signaling. PLoS One. 2016;11(3):1–14. https://doi.org/10.1371/journal.pone.0150846 .
Onodera T, Futai E, Kan E, Abe N, Uchida T, Kamio Y, Kaneko J. Phosphatidylethanolamine plasmalogen enhances the inhibiting effect of phosphatidylethanolamine on secretase activity. J Biochem. 2014;157(5):301–9. https://doi.org/10.1093/jb/mvu074 .
Maeba R, Nishimukai M, Sakasegawa S, Sugimori D, Hara H. Plasma/serum plasmalogens: methods of analysis and clinical significancee. Adv Clin Chem. 2015;70:31–91. https://doi.org/10.1016/bs.acc.2015.03.005 .
FDA. U S Food and Drug Administration Home Page [Internet]. Fda.gov . (2017) [cited 20 May 2017]. Available from: http://www.fda.gov .
Newton K, Newman W, Hill J. Review of biomarkers in colorectal cancer. Color Dis. 2011;14(1):3–17. https://doi.org/10.1111/j.1463-1318.2010.02439.x
Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6:140–6. https://doi.org/10.1016/j.molonc.2012.01.010 .
Nordberg G. Biomarkers of exposure, effects and susceptibility in humans and their application in studies of interactions among metals in China. Toxicol Lett. 2010;192(1):45–9. https://doi.org/10.1016/j.toxlet.2009.06.859 .
Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127(1):118–26. https://doi.org/10.1002/ijc.25007 .
Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256–69. https://doi.org/10.3978/j.issn.2218-676X.2015.06.04 .
Sideris M, Papagrigoriadis S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res. 2014;34(1):2061–8.
Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal Chem. 2014;86(1):161–75. https://doi.org/10.1021/ac403554h .
Zoeller R, Lake A, Nagan N, Gaposchkin D, Legner M, Lieberthal W. Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem J. 1999;338(3):769–76. https://doi.org/10.1042/bj3380769 .
Yamashita S, Honjo A, Aruga M, Nakagawa K, Miyazawa T. Preparation of marine plasmalogen and selective identification of molecular species by LC-MS/MS. Journal of Oleo Science. 2014;63(5):423–30. https://doi.org/10.5650/jos.ess13188 .
Wallner S, Schmitz G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids. 2011;164:573–89. https://doi.org/10.1016/j.chemphyslip.2011.06.008 .
Hu C, Wang M, Han X. Shotgun lipidomics in substantiating lipid peroxidation in redox biology: methods and applications. Redox Biol. 2017;12:946–55. https://doi.org/10.1016/j.redox.2017.04.030 .
Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA, Rapoport S, Chang MCJ. 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport. 1999;10(18):3887–90. https://doi.org/10.1097/00001756-199912160-00030 .
Lohner K. Is the high prospensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem Phys Lipids. 1996;81(2):167–84. https://doi.org/10.1016/0009-3084(96)02580-7 .
Lohner K, Hermetter A, Paltauf F. Phase behavior of ethanolamine plasmalogen. Chem Phys Lipids. 1984;34(2):163–70. https://doi.org/10.1016/0009-3084(84)90041-0 .
Han X, Gross RW. Nonmonotonic alterations in the fluorescence anisotropy of polar head group labeled fluorophores during the lamellar to hexagonal phase transition of phospholipids. Biophys J. 1992;63(2):309–16. https://doi.org/10.1016/S0006-3495(92)81616-8 .
Fuchs B. Analytical methods for (oxidized) plasmalogens: methodological aspects and applications. Free Radic Res. 2015;49(5):599–617. https://doi.org/10.3109/10715762.2014.999675 .
Nagan N, Zoeller R. Plasmalogens: biosynthesis and functions. Prog Lipid Res. 2001;40(3):199–229. https://doi.org/10.1016/S0163-7827(01)00003-0 .
Engelmann B. Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem Soc Trans. 2004;32(1):147–50. https://doi.org/10.1042/bst0320147 .
Leßig J, Fuchs B. Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr Med Chem. 2009;16(16):2021-41. http://dx.doi.org/10.2174/092986 0709788682164 .
Otoki Y, Kato S, Kimura F, Furukawa K, Yamashita S, Arai H, et al. Accurate quantitation of choline and ethanolamine plasmalogen molecular species in human plasma by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal. 2017;134:77–85. https://doi.org/10.1016/j.jpba.2016.11.019 .
Zhan Y, Wang L, Liu J, Ma K, Liu C, Zhang Y, Zou W. Choline Plasmalogens isolated from swine liver inhibit hepatoma cell proliferation associated with Caveolin-1/Akt signaling. PLoS One. 2013;8(10):eE77387. https://doi.org/10.1371/journal.pone.0077387 .
Brites P, Mooyer P, El Mrabet L, Waterham H, Wanders R. Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain. 2008;132(2):482–92. https://doi.org/10.1093/brain/awn295 .
Honsho M, Abe Y, Fujiki Y. Plasmalogen biosynthesis is spatiotemporally regulated by sensing plasmalogens in the inner leaflet of plasma membranes. Sci Rep. 2017;7:43936. https://doi.org/10.1038/srep43936 .
Brites P, Waterham H, Wanders R. Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta. 2004;1636(2-3):219–31. https://doi.org/10.1016/j.bbalip.2003.12.010 .
Goldfine H. The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res. 2010;49(4):493–8. https://doi.org/10.1016/j.plipres.2010.07.003 .
Honsho M, Asaoku S, Fujiki Y. Posttranslational regulation of fatty acyl-CoA reductase 1, Far1, controls ether Glycerophospholipid synthesis. J Biol Chem. 2010;285(12):8537–42. https://doi.org/10.1074/jbc.M109.083311 .
Jurkowitz-Alexander MS, Hirashima Y, Horrocks LA. Coupled enzyme assays for phospholipase activities with plasmalogen substrates. Methods Enzymol. 1991;197:79–89. https://doi.org/10.1016/0076-6879(91)97135-L .
Wu L, Pfeiffer D, Calhoon E, Madiai F, Marcucci G, Liu S, et al. Purification, identification, and cloning of Lysoplasmalogenase, the enzyme that catalyzes hydrolysis of the vinyl ether bond of Lysoplasmalogen. J Biol Chem. 2011;286(28):24916–30. https://doi.org/10.1074/jbc.M111.247163 .
Murakami M, Kudo I. Phospholipase A2. J Biochem. 2002;131(3):285–92. https://doi.org/10.1093/oxfordjournals.jbchem.a003101 .
Mankidy R, Ahiahonu PW, Ma H, Ayasinghe JD, Ritchie SA, Khan MA, Su-Myat KK, Wood PL, Goodenowe DB. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study. Lipids Health Dis. 2010;9:62. https://doi.org/10.1186/1476-511X-9-62 .
André A, Juanéda P, Sébédio J, Chardigny J. Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie. 2006;88(1):103–11. https://doi.org/10.1016/j.biochi.2005.06.010 .
Spector A, Yorek M. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015–35.
Demopoulos C, Pinckard R, Hanahan D. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem. 1979;254(19):9355–8.
Fernández R, Garate J, Lage S, Terés S, Higuera M, Bestard-Escalas J, et al. Identification of biomarkers of necrosis in xenografts using imaging mass spectrometry. J Am Soc Mass Spectrom. 2015;27(2):244–54. https://doi.org/10.1007/s13361-015-1268-x .
Broniec A, Klosinski R, Pawlak A, Wrona-Krol M, Thompson D, Sarna T. Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems. Free Radic Biol Med. 2011;50(7):892–8. https://doi.org/10.1016/j.freeradbiomed.2011.01.002 .
Sindelar P, Guan Z, Dallner G, Ernster L. The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic Biol Med. 1999;26(3-4):318–24. https://doi.org/10.1016/S0891-5849(98)00221-4 .
Zemski Berry K, Murphy R. Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: structure determination by mass spectrometry. Antioxid Redox Signal. 2005;7(1-2):157–69. https://doi.org/10.1089/ars.2005.7.157 .
Hahnel D, Huber T, Kurze V, Beyer K, Engelmann B. Contribution of copper binding to the inhibition of lipid oxidation by plasmalogen phospholipids. Biochem J. 1999;340(2):377–83. https://doi.org/10.1042/0264-6021:3400377 .
Fhaner C, Liu S, Zhou X, Reid G. Functional group selective derivatization and gas-phase fragmentation reactions of plasmalogen glycerophospholipids. Mass Spectrometry. 2013;2:S0015. https://doi.org/10.5702/massspectrometry .
Folch H, Less M, Stanley HA. A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–9. https://doi.org/10.1371/journal.pone.0020510 .
Fuchs B, Süß R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res. 2010;49(4):450–75. https://doi.org/10.1016/j.plipres.2010.07.001 .
Nimptsch A, Fuchs B, Süß R, Zschörnig K, Jakop U, Göritz F, Schiller J, Müller K. A simple method to identify ether lipids in spermatozoa samples by MALDI-TOF mass spectrometry. Anal Bioanal Chem. 2013;405(21):6675–82. https://doi.org/10.1007/s00216-013-7147-z .
Maeba R, Ueta N. Determination of choline and ethanolamine plasmalogens in human plasma by HPLC using radioactive triiodide (1-) ion (125I3−). Anal Biochem. 2004;331(1):169–76. https://doi.org/10.1016/j.ab.2004.05.030 .
Murphy E, Stephens R, Jurkowitz-Alexander M, Horrocks L. Acidic hydrolysis of plasmalogens followed by high-performance liquid chromatography. Lipids. 1993;28(6):565–8. https://doi.org/10.1007/BF02536090 .
Patton GM, Robins SJ. Separation and quantification of phospholipid classes by HPLC. Lipoproteins protocols. Methods Mol Biol. 1998;110:193–215.
Mawatari S, Okuma Y, Fujino T. Separation of intact plasmalogens and all other phospholipids by a single run of high-performance liquid chromatography. Anal Biochem. 2007;370(1):54–9. https://doi.org/10.1016/j.ab.2007.05.020 .
Busik JV, Reid GE, Lydic TA. Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry. Methods Mol Biol. 2009;579:33–70. https://doi.org/10.1007/978-1-60761-322-0_3 .
Wacker BK, Albert CJ, Ford BA, Ford DA. Strategies for the analysis of chlorinated lipids in biological systems. Free Radic Biol Med. 2013;59:92–9. https://doi.org/10.1016/j.freeradbiomed.2012.06.013 .
Otoki Y, Nakagawa K, Kato S, Miyazawa T. MS/MS and LC-MS/MS analysis of choline/ethanolamine plasmalogens via promotion of alkali metal adduct formation. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1004:85-92. https://doi.org/10.1016/j.jchromb.2015.09.012 .
Fuck B. Analytical methods for (oxidized) plasmalogens: methodological aspects and applications. Free Radic Res. 2014;49(5):599–617. https://doi.org/10.3109/10715762.2014.999675 .
Ritchie SA, Akita H, Takemasa I, Eguchi H, Pastural E, Nagano H, Monden M, Doki Y, Mori M, Jin W, Sajobi TT, Jayasinghe D, Chitou B, Yamazaki Y, Hite T, Goodenowe DB. Metabolic system alterations in pancreatic cancer patient serum: potential for early detection. BMC Cancer. 2013;13(416):1–17. https://doi.org/10.1186/1471-2407-13-416 .
Leßig J, Gey C, Süß R, Schiller J, Glander HJ, Arnhold J. Analysis of the lipid composition of human and boar spermatozoa by MALDI-TOF mass spectrometry, thin layer chromatography and 31P NMR spectroscopy. Comp Biochem Physiol B Biochem Mol Biol. 2004;137(2):265–77. https://doi.org/10.1016/j.cbpc.2003.12.001 .
Merchant TE, Minsky BD, Lauwers GY, Diamantis PM, Haida T, Glonek T. Esophageal cancer phospholipids correlated with histopathologic findings: a 31P NMR study. NMR Biomed. 1999;12(4):1-5. http://dx.doi.org/10.1002/nbm.1940060304 .
Snyder F, Wood R. Alkyl and alk-1-enyl ethers of glycerol in lipids from normal and neoplastic human tissues. Cancer Res. 1969;29(1):251–7.
Howard BV, Morris HP, Bailey JM. Ether-lipids, −glycerol phosphate dehydrogenase and growth rate in tumors and cultured cells. Cancer Res. 1972;32(7):1533–8.
Albert DH, Anderson CE. Ether-linked glycerolipids in human brain tumors. Lipids. 1977;12(2):188–92.
Roos DS, Choppin PW. Tumorigenicity of cell lines with altered lipid composition. Proc Natl Acad Sci U S A. 1984;81:7622–6.
Misra S, Ghosh A, Varticovski L. Naturally occurring ether linked phosphatidylcholine activates phosphatidylinositol 3-kinase and stimulates cell growth. J Cell Biochem. 1994;55(1):146–53. https://doi.org/10.1002/jcb.240550116 .
Benjamin DI, Cozzo A, Ji X, Roberts LS, Louie SM, Mulvihill MM, Luo K, Nomura DK. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc Natl Acad Sci U S A. 2013;110(37):14912–7. https://doi.org/10.1073/pnas.1310894110 .
Piano V, Benjamin DI, Valente S, Nenci S, Mai A, Aliverti A, Nomura DK, Mattevi A. Discovery of inhibitors for the ether lipid-generating enzyme AGPS as anti-cancer agents. ACS Chem Biol. 2015;10(11):2589–97. https://doi.org/10.1021/acSchembio.5b00466 .
Merchant T, Kasimos J, de Graaf P, Minsky B, Gierke L, Glonek T. Phospholipid profiles of human colon cancer using 31P magnetic resonance spectroscopy. Int J Color Dis. 1991;6(2):121–6. https://doi.org/10.1007/BF00300208 .
Christen S, Hagen TM, Shigenaga MK, Ames BN. Chronic inflammation, mutation and cancer. In: Parsonnet J, editor. Microbes and malignancy: infection as a cause of human cancer. New York: Oxford University Press; 1999. p. 35–88.
Gerbig S, Golf O, Balog J, Denes J, Baranyai Z, Zarand A, Raso E, Timar J, Takats Z. Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging. Anal Bioanal Chem. 2012;403:2315–25. https://doi.org/10.1007/s00216-012-5841-x .
Jun L, Can-Qun L, Lei X, Hong Y. Plasma content variation and correlation of plasmalogen and GIS, TC and TPL in gastric carcinoma patients: a comparative study. Med Sci Monit Basic Res. 2015;21:157–60. https://doi.org/10.12659/MSMBR.893908 .
Sugiura T, Fukuda T, Masuzawa Y, Waku K. Ether lysophospholipid-induced production of platelet-activating factor in human polymorphonuclear leukocytes. Biochim Biophys Acta. 1990;1047:223–32. https://doi.org/10.1016/0005-2760(90)90520-8 .
Schrakamp G, Schutgens RB, Wanders RJ, Heymans HSA, Tager JM, Bosch HVD. The cerebro-hepato-renal (Zellweger) syndrome. Impaired de novo biosynthesis of plasmalogens in cultured skin fibroblasts. Biochim Biophys Acta. 1985;833(1):170–4. https://doi.org/10.1016/0005-2760(85)90266-8 .
Patterson NH, Alabdulkarim B, Lazaris A, Thomas A, Marcinkiewicz MM, Gao ZH, Vermeulen PB, Chaurand P, Metrakos P. Assessment of pathological response to therapy using lipid mass spectrometry imaging. Sci Rep. 2016;6(36814). https://doi.org/10.1038/srep36814 .
Lydic TA, Townsend S, Adda CG, Collins C, Mathivanan S, Reid GE. Rapid and comprehensive ‘shotgun’ lipidome profiling of colorectal cancer cell derived exosomes. Methods. 2015;87:83–95. https://doi.org/10.1016/j.ymeth.2015.04.014 .
Smith R, Lespi P, Luca M, Bustos C, Marra F, Alaniz M, Marra C. A reliable biomarker derived from plasmalogens to evaluate malignancy and metastatic capacity of human cancers. Lipids. 2008;43(1):79–89. https://doi.org/10.1007/s11745-007-3133-6 .
Cífková E, Holcapek M, Lísa M, Vrána D, Gatek J, Melichar B. Determination of lipidomic diferences between human breast câncer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal Bioanal Chem. 2015;407:991–1002. https://doi.org/10.1007/s00216-014-8272-z .
Chen X, Chen H, Dai M, Ai J, Li Y, Mahon B, Dai S, Deng Y. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions. Oncotarget. 2016;7(24):36622–31.
Hou Y, Li J, Xie H, Sun F, Yang K, Wang J, Ke C, Lou G, Li K. Differential plasma lipids profiling and lipid signatures as biomarkers in the early diagnosis of ovarian carcinoma using UPLC-MS. Metabolomics. 2016;12(18):1–12. https://doi.org/10.1007/s11306-015-0891-7 .
Siti HN, Kamisah Y, J Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc Pharmacol. 2015;71:40–56. https://doi.org/10.1016/j.vph.2015.03.005 .
Blitterswijk WJV, Verheij M. Anticancer mechanisms and clinical application of alkylphospholipids. Biochim Biophys Acta. 2013;1831:663–74. https://doi.org/10.1016/j.bbalip.2012.10.008 .
Kostadinova A, Topouzova-Hristova T, Momchilova A, Tzoneva R, Berger MR. Antitumor lipids-structure, functions, and medical applications. Adv Protein Chem Struct Biol. 2015;101:27–66. https://doi.org/10.1016/bs.apcsb.2015.08.001 .
Lohmeyer M, Bittman R. Antitumor ether lipids and alkylphosphocholines. Drugs Future. 1994;19:1021–37.
Ríos-Marco P, Marco C, Gálvez X, Jiménez-López JM, Carrasco MP. Alkylphospholipids: na update on molecular mechanisms and clinical relevance. Biochim Biophys Acta. 2017;1859:1657–67. https://doi.org/10.1016/j.bbamem.2017.02.016 .
Shin J, Qualls MM, Boomer JA, Robarge J, Thompson DH. An efficient new route to plasmenyl-type lipids: synthesis and cytotoxicity of a plasmenylcholine analogue of the antitumor ether lipid ET-18-OMe. J Am Chem Soc. 2001;123:508–9. https://doi.org/10.1021/ja005522t .
Bittman R, Qin D, Wong DA, Tigyi G, Samadder P, Arthur G. Synthesis and antitumor properties of a plasmalogen methyl ether analogue. Tetrahedron. 2001;57:4277–82. https://doi.org/10.1016/S0040-4020(01)00371-4 .
Flasiński M, Hąc-Wydro K, Wydro P, Dynarowicz-Łątka P. Influence of platelet-activating factor, lyso-platelet-activating factor and edelfosine on Langmuir monolayers imitating plasma membranes of cell lines differing in susceptibility to anti-cancer treatment: the effect of plasmalogen level. J R Soc Interface. 2014;11:1–11. https://doi.org/10.1098/rsif.2013.1103 .
Chabot MC, Wykle RL, Modest EJ, Daniel LW. Correlation of ether lipid content of human leukemia cell lines and their susceptibility to 1-OOctadecyl-l-O-methyl-rac-glycero-S-phosphocholine. Cancer Res. 1989;49(16):4441–5.
Lin HJ, Wu PC, Ho JCI. The ether lipid tumour marker in human liver with hepatocellular carcinoma. Br J Cancer. 1980;41(2):320–4.
Liesenfeld D, Grapov D, Fahrmann J, Salou M, Scherer D, Toth R, et al. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study. Am J Clin Nutr. 2015;102(2):433–43. https://doi.org/10.3945/ajcn.114.103804 .