Plasma etching of III–V semiconductors in BCl3 chemistries: Part II: InP and related compounds

Plasma Chemistry and Plasma Processing - Tập 17 - Trang 169-179 - 1997
J. W. Lee1, J. Hong1, E. S. Lambers1, C. R. Abernathy1, S. J. Pearton1, W. S. Hobson2, F. Ren2
1University of Florida, Gainesville
2Bell Laboratories, Lucent Technologies, Murray Hill

Tóm tắt

BCl3/Ar and BCl3/N2 plasma chemistries were compared for patterning of InP, InAs, InSb, InGaAs, InGaAsP, and AlInAs. Under electron cyclotron resonance conditions etch rates in excess of 1 µm/min can be achieved at room temperature with low additional rf chuck power (150 W). The etch rates are similar for both chemistries, with smoother surface morphologies for BCl3/Ar. However, the surfaces are still approximately an order of magnitude rougher (as quantified by atomic force microscopy) than those obtained under the same conditions with Cl2/Ar. InP surfaces etched at high BCl3-to-Ar ratios have measurable concentrations of boron-and chlorine-containing residues.

Tài liệu tham khảo

U. Niggebrugge, M. Klug, and G. Garus,Inst. Phys. Conf. Ser. 79, 367 (1985). T. R. Hayes, M. Dreisbach, P. Thomas, W. C. Dautremont-Smith, and L. A. Heimbrook,J. Vac. Sci. Technol. B 7, 1142 (1989). S. J. Pearton, inHandbook of Compound Semiconductors, P. H. Holloway and G. E. McGuire, eds. (Noyes, Englewood Cliffs, New Jersey, 1996), Chapter 8. D. L. Melville, J. G. Simmons, and D. A. Thompson,J. Vac. Sci. Technol. B 11, 2038 (1993). D. M. Manos and D. L. Flamm,Plasma Etching—An Introduction (Academic Press, New York, 1989). S. J. Pearton, U. K. Chakrabarti, A. Katz, A. Perley, W. S. Hobson, and C. Constantine,J. Vac. Sci. Technol. B 9, 1421 (1991). H. E. G. Arnot, R. W. Glew, G. Schiavini, L. J. Rigby, and A. Piccirillo,Appl. Phys. Lett. 62, 3189 (1993). S. J. Pearton and W. S. Hobson,Appl. Phys. Lett. 56, 2186 (1990). S. J. Pearton, U. K. Chakrabarti, and W. S. Hobson,J. Appl. Phys. 66, 2061 (1989). J. G. van Hassel, C. M. van Es, and P. A. M. Nouwens,Electron. Lett. 31, 834 (1995). C. Constantine, C. Barratt, S. J. Pearton, F. Ren, and J. R. Lothian,Electron. Lett. 228, 1749 (1992). R. J. Shul, R. P. Schneider, and C. Constantine,Electron. Lett. 30, 817 (1994). G. F. McLane, M. W. Cole, D. W. Eckart, P. Cooke, R. Moekirk, and M. Meyyappan,J. Vac. Sci. Technol. A 11, 1753 (1993). R. Khare, J. Brown, M. Ju, D. Pierson, M. Melendes, and C. Constantine,J. Vac. Sci. Technol. B 12, 2947 (1994). J. Asmussen,J. Vac. Sci. Technol. A 7, 883 (1989). S. Thomas, K. K. Ko, and S. W. Pang,J. Vac. Sci. Technol. A 13, 894 (1995). F. Ren, J. R. Lothian, W. S. Hobson, J. Lopata, J. Caballero, and S. J. Pearton,Appl. Phys. Lett. 67, 2497 (1995). S. J. Pearton,Int. J. Mod. Phys. B 8, 1781 (1994). W. S. Hobson,Mater. Res. Soc. Symp. Proc. 300, 75 (1993). C. R. Abernathy,Mater. Sci. Eng. Rep. 14, 203 (1995). C. R. Abernathy, S. J. Pearton, F. Ren, and J. Song,J. Cryst. Growth 113, 412 (1991).