Plasma enhanced synthesis of N doped vertically aligned carbon nanofibers on 3D graphene

Surface and Interface Analysis - Tập 51 Số 2 - Trang 290-297 - 2019
Siddharth Mishra1, Hung V. Nguyen2, Paa Kwasi Adusei1, Yu‐Yun Hsieh1, Vesselin Shanov2,1
1Department of Materials Science and & Engineering, University of Cincinnati, OH 45221, USA
2Department of Chemical and Environmental Engineering, University of Cincinnati, OH, 45221, USA

Tóm tắt

Graphene and carbon nanotubes/fibers (CNT/CNF) hybrid structures are emerging as frontier materials for high‐efficiency electronics, energy storage, thermoelectric, and sensing applications owing to the utilization of extraordinary electrical and physical properties of both nanocarbon materials. Recent advances show a successful improvement in the structure and surface area of layered graphene by incorporating another dimension and structural form—three‐dimensional graphene (3DG). In this study, vertically aligned CNFs were grown using plasma enhanced chemical vapor deposition on a relatively new form of compressed 3DG. The latter was synthesized using a conventional thermal chemical vapor deposition. The resulting free‐standing hybrid material is in‐situ N doped during synthesis by ammonia plasma and is produced in the form of a hybrid paper. Characterization of this material was done using electrochemical and spectroscopic measurements. The N doped hybrid showed relatively higher surface area and improved areal current density in electrochemical measurements than compressed pristine 3DG, which makes it a potential candidate for use as an electrode material for supercapacitors, sensors, and electrochemical batteries.

Từ khóa


Tài liệu tham khảo

10.1063/1.1857591

10.1088/0963-0252/12/2/312

ChenJ BoZ LuG.Vertically‐oriented graphene: PECVD synthesis and applications;2015.https://doi.org/10.1007/978‐3‐319‐15302‐5.

10.1088/0963-0252/19/3/034016

10.1088/1361-6463/aa9167

10.1038/ncomms7620

10.2174/1573413713666170317150807

10.1166/jnn.2013.7866

10.1016/S0925-4005(03)00418-0

ChangWS.Synthesis of free‐standing carbon nanotube electrodes using plasma‐enhanced chemical vapor deposition. In: 2016 IEEE International Conference on Plasma Science (ICOPS). IEEE;2016:1–1.https://doi.org/10.1109/PLASMA.2016.7534212.

10.1038/srep01696

10.1155/2013/734686

10.1142/S1793984414410190

10.1016/S1872-5805(16)60002-1

10.1088/0957-4484/23/1/015301

10.1007/s12274-014-0679-5

10.1016/j.piutam.2017.03.042

10.1002/smll.201100990

10.1039/C5TA10031C

10.1016/j.carbon.2014.10.080

10.1149/2.0151706jss

10.1021/am504922v

10.1021/acsenergylett.6b00015

10.1016/j.electacta.2017.03.161

10.1016/j.carbon.2018.02.024

10.1039/C7RA01355H

10.1016/j.snb.2014.07.019

10.1021/acs.nanolett.5b02831

10.1016/j.carbon.2015.09.056

10.1039/c0jm00446d

10.1109/MNANO.2015.2409394

10.1002/smll.201603114

10.1007/s11090-012-9387-7

10.1109/TPS.2009.2015451

10.1016/j.physrep.2004.10.006

10.1002/ppap.201500229

10.1002/adma.201500707

10.1002/adma.201304756

10.1063/1.4947188

10.1016/j.apsusc.2017.07.127

Li Y, 2017, Nitrogen doped macroporous carbon as electrode materials for high capacity of supercapacitor, Polymers (Basel), 9, 1

10.1149/2.0281512jss

10.1016/j.diamond.2005.08.013

10.1103/PhysRevLett.90.065503

10.1038/srep03344