Plasma cytokine profiles associated with rhodesiense sleeping sickness and falciparum malaria co-infection in North Eastern Uganda
Tóm tắt
Immunological Human African Trypanosomiasis (HAT) studies often exclude malaria, although both infections overlap in specific endemic areas. During this co-infection, it is not known whether this parasitic interaction induces synergistic or antagonistic cytokine response among humans. This study determined prevalence of Plasmodium falciparum malaria among Trypanosoma brucei rhodesiense HAT and plasma cytokine profile levels associated with HAT and/or malaria infections. Participants were recruited at Lwala hospital in north eastern Uganda: healthy controls (30), malaria (28), HAT (17), HAT and malaria (15) diagnosed by microscopy and PCR was carried out for parasite species identification. Plasma cytokine levels of Interferon-gamma (IFN-γ), Tumour Necrosis Factor-alpha (TNF-α), Interleukin (IL)-6, IL-10 and Transforming Growth Factor-beta (TGF-β) were measured by sandwich Enzyme-Linked Immuno Sorbent Assay and data statistically analysed using Graphpad Prism 6.0. The prevalence of P. falciparum malaria among T. rhodesiense HAT cases was high (46.8%). Malaria and/or HAT cases presented significant higher plasma cytokine levels of IFN-γ, TNF-α, IL-6, IL-10 and TGF-β than healthy controls (P < 0.05). Levels of IFN-γ, IL-6 and IL-10 were significantly elevated in HAT over malaria (P < 0.05) but no significant difference in TNF-α and TGF-β between HAT and malaria (P > 0.05). Co-infection expressed significantly higher plasma IFN-γ, IL-6, and IL-10 levels than malaria (P < 0.05) but no significant difference with HAT mono-infection (P > 0.05). The TNF-α level was significantly elevated in co-infection over HAT or malaria mono-infections (P < 0.05) unlike TGF-β level. Significant positive correlations were identified between IFN-γ verses TNF-α and IL-6 verses IL-10 in co-infection (Spearman’s P < 0.05). The T. b. rhodesiense significantly induced the cytokine response more than P. falciparum infections. Co-infection led to synergistic stimulation of pro-inflammatory (IFN-γ, TNF-α), and anti-inflammatory (IL-6, and IL-10) cytokine responses relative to malaria mono-infection. Level of TNF-α partially indicates the effect induced by T. b. rhodesiense and P. falciparum mono-infections or a synergistic interaction of co-infections which may have adverse effects on pathogenesis, prognosis and resolution of the infections. Trial registration VCD-IRC/021, 26/08/2011; HS 1089, 16/01/2012
Tài liệu tham khảo
Kuepfer I, Hhary EP, Allan M, Edielu A, Burri C, Johannes A. Clinical presentation of T. b. rhodesiense sleeping sickness in second stage patients from Tanzania and Uganda. PLoS Negl Trop Dis. 2011;5(3):e968.
Kato CD, Nanteza A, Mugasa C, Edyelu A, Matovu E. Clinical profiles, disease outcome and co-morbidities among T. b. rhodesiense sleeping sickness patients in Uganda. PLoS ONE. 2015;10(2):e0118370. https://doi.org/10.1371/journal.pone.0118370.
Kagira JM, Maina N, Njenga J, Karanja SM, Karori SM, Ngotho JM. Prevalence types of coinfections in sleeping sickness patients in Kenya, (2000/2009). J Trop Med. 2011. https://doi.org/10.1155/2011/248914.
Cheesbrough M. District laboratory practice in tropical countries. Cambridge: Cambridge University Press; 2005.
Cox F. Concomitant infections, parasites and immune responses. Parasitology. 2001;122(Suppl):S23–38.
Supali T, Verweij JJ, Eddy A, Djuardi Y, Hamid F, Kaisar MMM, Wammes LJ, Lieshout LV, Luty AJF, Yazdanbakhsh M, Sartono E. Polyparasitism and its impact on the immune system. Int J Parasitol. 2010;40:1171–6. https://doi.org/10.1016/j.ijpara.2010.05.003.
Maclean L, Chisi JE, Odiit M, Wendy C, Ferris V, Picozzi K, Sternberg JM. Severity of human African trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infect Immun. 2004;72(12):7040–4.
Maclean L, Odiit M, Macleod A, Morrison L, Sweeney L, Cooper A, et al. Spatially and genetically distinct African trypanosome virulence variants defined by host interferon-gamma response. J Infect Dis. 2007;196(11):1620–8.
Kato CD, Alibu VP, Nanteza A, Mugasa CM, Matovu E. Interleukin (IL)-6 and IL-10 are up regulated in late stage Trypanosoma brucei rhodesiense sleeping sickness. PLoS Negl Trop Dis. 2015;9(6):e0003835. https://doi.org/10.1371/journal.pntd.0003835.
Day NPJ, Hien TT, Schollaardt T, Loc PP, Chuong LV, Chau TTH, Nguyen HP, White NJ, Hien TT, Loc PP, Mai HTH, Sinh DX, Ho M. The prognostic and pathophysiologic role of pro- and anti-inflammatory cytokines in severe malaria. J Infect Dis. 1999;180:1288–97. https://doi.org/10.1086/315016.
Robinson LJ, Ombrain MCD, Stanisic DI, Taraika J, Bernard N, Richards JS, Beeson JG, Tavul L, Michon P, Mueller I, Schofield L. Cellular tumor necrosis factor, gamma interferon, and interleukin-6 responses as correlates of immunity and risk of clinical Plasmodium falciparum Malaria in children from Papua New Guinea. Infect Immun. 2009;77(7):3033–43.
Oyegue-liabagui SL, Bouopda-tuedom AG, Kouna LC, Nzoughe H, Tchitoula-makaya N, Pegha-moukandja I. Pro- and anti-inflammatory cytokines in children with malaria in Franceville, Gabon. Am J Clin Exp Immunol. 2017;6(2):9–20.
Namangala B, Noe W, De Baetselier P, Brys L, Beschin A. Relative contribution of interferon-γ and interleukin-10 towards resistance to murine African trypanosomosis. J Infect Dis. 2001;183:1794–800.
Namangala B, Baetselier PDE, Beschin A. Both type-I and type-II responses contribute to murine trypanotolerance. J Vet Med Sci. 2008;71(3):313–8.
Dodoo D, Omer FM, Todd J, Akanmori BD, Koram KA, Riley EM. Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J Infect Dis. 2002;185:971–9. https://doi.org/10.1086/339408.
Walther M, Tongren JE, Andrews L, Korbel D, King E, Fletcher H, et al. Upregulation of TGF-β, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity. 2005;23:287–96. https://doi.org/10.1016/j.immuni.2005.08.006.
Sarciron ME, Gherardi A. Cytokines involved in toxoplasmic encephalitis. Scand J Immunol. 2000;52:534–43.
Ho M, Schollaardt T, Snape S, Looareesuwan S, Suntharasamai P, White NJ. Endogenous interleukin-10 modulates proinflammatory response in Plasmodium falciparum malaria. J Infect Dis. 1998;178:520–5.
Vaz AMR. The reciprocal influence of malaria and sleeping sickness co-infections the reciprocal influence of malaria and sleeping sickness co-infections. EMBO Young Scientists Forum. 2013 (Thesis).
Courtin D, Jamonneau V, Koffi M, Milet J, Sese C. Comparison of cytokine plasma levels in human African trypanosomiasis. Trop Med Int Health. 2006;11(5):647–53.
Fèvre EM, Picozzi K, Fyfe J, Waiswa C, Odiit M, Coleman PG, et al. A burgeoning epidemic of sleeping sickness in Uganda. Lancet. 2005;366:745–7.
WHO. Control and surveillance of human African trypanosomiasis: report of a WHO expert committee, vol. 984., WHO technical report seriesGeneva: World Health Organization; 2013. p. 1–250.
Selby R, Bardosh K, Picozzi K, Waiswa C, Welburn SC. Cattle movements and trypanosomes: restocking efforts and the spread of Trypanosoma brucei rhodesiense sleeping sickness in post-conflict Uganda. Parasite Vectors. 2013;6(1):281. https://doi.org/10.1186/1756-3305-6-281.
Chappuis F, Loutan L, Simarro P, Lejon V, Bu P. Options for field diagnosis of human African trypanosomiasis. Clin Microbiol Rev. 2005;18:133–46.
Woo PTK. The haematocrit centrifuge technique for the diagnosis of African trypanosomiasis. Acta Trop. 1970;27:384–6. https://doi.org/10.1139/z69-150.
Mumba Ngoyi D, Menten J, Pyana PP, Büscher P, Lejon V. Stage determination in sleeping sickness: comparison of two cell counting and two parasite detection techniques. Trop Med Int Health. 2013;18:778–82.
UBOS and ICF Macro. Uganda malaria indicator survey 2009. Calverton: UBOS and ICF Macro; 2010.
Center for Disease Control and Prevention. Guidelines for the use of antiretroviral agents in pediatric HIV infection. Center for Disease Control and Prevention: Atlanta; 1998.
WHO. Evidence for advocacy: key statistics on the fight against malaria. Roll back malaria partnership. 2015.
Maina NWN, Oberle M, Otieno C, Kunz C, Maeser P, Ndung JM, Brun R. Isolation and propagation of Trypanosoma brucei gambiense from sleeping sickness patients in south Sudan. Trans R Soc Trop Med Hyg. 2007;101:540–6.
Dokomajilar C, Greenhouse B, Cattamanchi CA, Parikh S, Nsobya S, Dorsey G. Protocol for genotyping P. falciparum; merozoite surface protein (Msp-1), merozoite surface protein (Msp-2). 2006.
Chiswick EL, Duffy E, Japp B, Remick D. Detection and quantification of cytokines and other biomarkers. Methods Mol Biol. 2012;844:15–30. https://doi.org/10.1007/978-1-61779-527-5_2.
Armbruster AD, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):S49–52.
Malele II, Kibona SN, Matemba LE, Sahani K, Swilla J, Mwalimu CD, Mayala BK, Kimaro E, Msumary C, Kalinga RB. Human African trypanosomiasis and challenges to its control in Urambo, Kasulu and Kibondo Districts, western Tanzania. Tanzan Health Res Bull. 2006;8(2):80–5.
Maina NW, Kagira JM, Oberle M, Ndung’u JM, Brun R. Co-infection of sleeping sickness patients with malaria and loiasis in southern Sudan. J Protozool Res. 2010;20(3):12–9.
Rodrigues-da-Silva RN, Lima-Junior JD, Antas PR, Baldez A, Storer FL, Santos F, Banic DM, Oliveira-Ferreira JD. Alterations in cytokines and haematological parameters during the acute and convalescent phases of Plasmodium falciparum and Plasmodium vivax infections. Mem Inst Oswaldo Cruz. 2014;109(2):154–62.
Guimarães da Costa A, do Valle Antonelli LR, Augusto Carvalho Costa P, Paulo Diniz Pimentel J, Garcia NP, Monteiro Tarragô A, et al. The robust and modulated biomarker network elicited by the Plasmodium vivax infection is mainly mediated by the IL-6/IL-10 axis and is associated with the parasite load. J Immunol Res. 2014. https://doi.org/10.1155/2014/318250.
Masocha W, Robertson B, Rottenberg ME, Mhlanga J, Sorokin L, Kristensson K. Cerebral vessel laminins and IFN-γ define Trypanosoma brucei brucei penetration of the blood–brain barrier. J Clin Investig. 2004;114(5):689.
Magez S, Geuskens M, Beschin A, Favero H, Verschueren H, Lucas R, De Baetselier P. Specific uptake of tumor necrosis factor-α is involved in growth control of Trypanosoma brucei. J Cell Biol. 1997;137(3):715–27.
Magez S, Radwanska M, Beschin A, Sekikawa K. Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun. 1999;67(6):3128–32.
Sternberg JM, Rodgers J, Bradley B, Maclean L, Murray M, Kennedy PGE. Meningoencephalitic African trypanosomiasis: brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J Neuroimmunol. 2005;167:81–8.
Maclean L, Odiit M, Sternberg JM. Nitric oxide and cytokine synthesis in human African trypanosomiasis. J Infect Dis. 2001;184:1086–90.
Mccall MBB, Sauerwein RW. Interferon-γ–central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol. 2010;88(6):1131–43.
Perlaza B, Sauzet J, Brahimi K, Benmohamed L, Druilhe P. Interferon-gamma, a valuable surrogate marker of Plasmodium falciparum pre-erythrocytic stages protective immunity. Malar J. 2011. https://doi.org/10.1186/1475-2875-10-27.
Depinay N, Franetich JF, Mauduit M, Grüner AC, Chavatte M, Luty AJF, van Gemert G, Sauerwein RW, Siksik J, Hannoun L, Mazier D, Snounou G, Rénia L. Inhibitory effect of TNF-α on malaria pre-erythrocytic stage development: influence of host hepatocyte/parasite combinations. PLoS ONE. 2011;6(3):e17464. https://doi.org/10.1371/journal.pone.0017464.
Ferreira A, Schofield L, Enea V, Schellekens H, Van Der Meide P, Collins WE, Nussenzweig RS, Nussenzweig V. Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science. 1986;232:881–4.
Nussler A, Pied S, Goma J, Rénia L, Miltgen F, Grau GE, et al. TNF inhibits malaria hepatic stages in vitro via synthesis of IL-6. Int Immunol. 1991;3:317–21.
D’Ombrain MC, Robinson LJ, Stanisic DI, Taraika J, Bernard N, Michon P, Mueller I, Schofield L. Association of early interferon-gamma production with immunity to clinical malaria: a longitudinal study among Papua New Guinean children. Clin Infect Dis. 2008;47(11):1380–7.
Taylor-Robinson AW. Regulation of immunity to malaria: valuable lessons learned from murine models. Parasitol Today. 1995;11(9):334–42.
Hunt NH, Grau GE. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 2003;24:491–9.
Musumeci M, Malaguarnera L, Simporè J, Messina A, Musumeci S. Modulation of immune response in Plasmodium falciparum malaria: role of IL-12, IL-18 and TGF-β. Cytokines. 2003;21:172–8. https://doi.org/10.1016/S1043-4666(03)00049-8.
Prakash D, Fesel C, Jain R, Cazenave P, Mishra GC, Pied S. Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. J Infect Dis. 2006;194:198–207. https://doi.org/10.1086/504720.
Omer FM, Riley EM. Transforming growth factor beta production is inversely correlated with severity of murine malaria infection. J Exp Med. 1998;188(1):39–48.
Tsutsui N, Kamiyama T. Transforming growth factor beta-induced failure of resistance to infection with blood-stage Plasmodium chabaudi in mice. Infect Immun. 1999;67(5):2306–11.