Nồng độ Hsp90 trong huyết tương của bệnh nhân xơ cứng bì hệ thống và mối liên hệ với tổn thương phổi và da: nghiên cứu cắt ngang và dọc
Tóm tắt
Nghiên cứu trước đây của chúng tôi đã chứng minh sự gia tăng biểu hiện của protein sốc nhiệt (Hsp) 90 trong da của bệnh nhân xơ cứng bì hệ thống (SSc). Mục tiêu của chúng tôi là đánh giá nồng độ Hsp90 trong huyết tương ở bệnh nhân SSc và xác định mối liên quan của nó với các đặc điểm liên quan đến SSc. Có 92 bệnh nhân SSc và 92 người đối chứng khỏe mạnh được sắp xếp theo độ tuổi và giới tính được tuyển chọn cho phân tích cắt ngang. Phân tích dọc bao gồm 30 bệnh nhân bị SSc kèm bệnh phổi kẽ (ILD) được điều trị thường xuyên với cyclophosphamide. Hsp90 gia tăng ở bệnh nhân SSc so với nhóm đối chứng khỏe mạnh. Hsp90 tương quan dương tính với protein C phản ứng và tương quan âm tính với các xét nghiệm chức năng phổi như dung tích sống gắng sức và khả năng khuếch tán cho cacbon monoxide (DLCO). Ở bệnh nhân xơ cứng bì hệ thống da lan rộng (dcSSc), Hsp90 tương quan dương tính với thang điểm da Rodnan được sửa đổi. Ở bệnh nhân SSc-ILD được điều trị bằng cyclophosphamide, không thấy sự khác biệt về Hsp90 giữa lúc bắt đầu và sau 1, 6, hoặc 12 tháng điều trị. Tuy nhiên, Hsp90 ban đầu có thể dự đoán sự thay đổi DLCO sau 12 tháng. Nghiên cứu này chỉ ra rằng nồng độ Hsp90 trong huyết tương gia tăng ở bệnh nhân SSc so với nhóm đối chứng khỏe mạnh cùng độ tuổi và giới tính. Hsp90 gia tăng ở bệnh nhân SSc có liên quan với hoạt động viêm gia tăng, chức năng phổi kém hơn và trong dcSSc, với mức độ tổn thương da. Hsp90 trong huyết tương ban đầu có thể dự đoán sự thay đổi DLCO sau 12 tháng ở bệnh nhân SSc-ILD điều trị bằng cyclophosphamide.
Từ khóa
#Hsp90 #Xơ cứng bì hệ thống #Bệnh phổi kẽ #Cyclophosphamide #Chức năng phổi #Đánh giá cắt ngang #Đánh giá dọc #Biểu hiện viêm #Tổn thương da #Dự đoán DLCOTài liệu tham khảo
Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15, 705–730 (2019).
Denton, C. P., Wells, A. U. & Coghlan, J. G. Major lung complications of systemic sclerosis. Nat. Rev. Rheumatol. 14, 511–527 (2018).
Khanna, D. et al. Etiology, risk factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am. J. Respir. Crit. Care. Med. 201, 650–660 (2020).
Perelas, A., Silver, R. M., Arrossi, A. V. & Highland, K. B. Systemic sclerosis-associated interstitial lung disease. Lancet. Respir. Med. 8, 304–320 (2020).
Elhai, M., Avouac, J. & Allanore, Y. Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: Where do we stand?. Semin. Arthritis. Rheum. https://doi.org/10.1016/j.semarthrit.2020.01.006 (2020).
Distler, J. H. et al. Review: Frontiers of antifibrotic therapy in systemic sclerosis. Arthritis. Rheumatol. 69, 257–267 (2017).
Santoro, M. G. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 59, 55–63 (2000).
Guo, J., Chang, C. & Li, W. The role of secreted heat shock protein-90 (Hsp90) in wound healing—How could it shape future therapeutics?. Expert Rev. Proteomics. 14, 665–675 (2017).
Burrows, F., Zhang, H. & Kamal, A. Hsp90 activation and cell cycle regulation. Cell Cycle 3, 1530–1536 (2004).
Echeverria, P. C. & Picard, D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta. Mol. Cell. Res. 1803, 641–649 (2010).
Pearl, L. H. & Prodromou, C. Structure and in vivo function of Hsp90. Curr. Opin. Struct. Biol. 10, 46–51 (2000).
McClellan, A. J. et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121–135 (2007).
Zuehlke, A. D., Moses, M. A. & Neckers, L. Heat shock protein 90: Its inhibition and function. Philos. Trans. R. Soc. B. Biol. Sci. 373, 20160527 (2018).
Tsan, M. F. & Gao, B. Cytokine function of heat shock proteins. AJP Cell. Physiol. 286, C739-744 (2004).
Bohonowych, J. E. et al. Extracellular Hsp90 mediates an NF-κB dependent inflammatory stromal program: Implications for the prostate tumor microenvironment. Prostate 74, 395–407 (2014).
Chung, S. W. et al. Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 378, 444–449 (2009).
Beyer, C. & Distler, J. H. W. Tyrosine kinase signaling in fibrotic disorders. Biochim. Biophys. Acta. Mol. Basis. Dis. 1832, 897–904 (2013).
Koga, F. et al. Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc. Natl. Acad. Sci. 103, 11318–11322 (2006).
Skhirtladze, C. et al. Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis. Arthriti. Rheum. 58, 1475–1484 (2008).
Wrighton, K. H., Lin, X. & Feng, X. H. Critical regulation of TGFbeta signaling by Hsp90. Proc. Natl. Acad. Sci. USA 105, 9244–9249 (2008).
Tomcik, M. et al. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann. Rheum. Dis. 73, 1215–1222 (2014).
Gao, C. et al. Inhibition of heat shock protein 90 as a novel platform for the treatment of cancer. Curr. Pharm. Des. 25, 849–855 (2019).
Norton, P. M., Isenberg, D. A. & Latchman, D. S. Elevated levels of the 90 kd heat shock protein in a proportion of SLE patients with active disease. J. Autoimmun. 2, 187–195 (1989).
Bubova, K. et al. Plasma Hsp90 levels in patients with spondyloarthritis and their relation to structural changes: A cross-sectional study. Biomark. Med. https://doi.org/10.2217/bmm-2020-0360.
Storkanova, H. et al. Increased Hsp90 in muscle tissue and plasma associates with disease activity and skeletal muscle involvement in patients with idiopathic inflammatory myopathies. Ann. Rheum. Dis. 79(supplement 1), 410 (2020).
Ocaña, G. J. et al. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α. Immunology 151, 198–210 (2017).
Tas, F., Bilgin, E., Erturk, K. & Duranyildiz, D. Clinical significance of circulating serum cellular heat shock protein 90 (HSP90) level in patients with cutaneous malignant melanoma. Asian. Pacific. J. Cancer Prev. 18, 599–601 (2017).
Fu, Y. et al. Plasma heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: An official, large-scale, and multicenter clinical trial. E. Bio. Medicine 24, 56–63 (2017).
Shi, Y. et al. Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses. Clin. Cancer. Res. 20, 6016–6022 (2014).
Muangchan, C. & Pope, J. E. The significance of interleukin-6 and C-reactive protein in systemic sclerosis: A systematic literature review. Clin. Exp. Rheumatol. 31, 122–134 (2013).
Sontake, V. et al. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight 2, e91454 (2017).
Koh, R. Y. et al. Inhibition of transforming growth factor-β via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol. Med. Rep. 11, 3808–3813 (2015).
O’Reilly, S., Cant, R., Ciechomska, M. & Van Laar, J. M. Interleukin-6: A new therapeutic target in systemic sclerosis?. Clin. Transl. Immunol. 2, e4 (2013).
Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): A phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).
Narváez, J. et al. Effectiveness and safety of tocilizumab for the treatment of refractory systemic sclerosis associated interstitial lung disease: A case series. Ann. Rheum. Dis. 78, e123 (2019).
O’Reilly, S., Ciechomska, M., Cant, R. & Van Laar, J. M. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via gremlin protein. J. Biol. Chem. 289, 9952–9960 (2014).
Sato, N. et al. Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem. Biophys. Res. Commun. 300, 847–852 (2003).
Nannini, C., West, C. P., Erwin, P. J. & Matteson, E. L. Effects of cyclophosphamide on pulmonary function in patients with scleroderma and interstitial lung disease: A systematic review and meta-analysis of randomized controlled trials and observational prospective cohort studies. Arthritis Res. Ther. 10, R124 (2008).
Chakraborty, A., Boel, N.M.-E. & Edkins, A. L. HSP90 interacts with the fibronectin N-terminal domains and increases matrix formation. Cells 9, 272 (2020).
Van Den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 65, 2737–2747 (2013).
Silver, R. M., Miller, K. S., Kinsella, M. B., Smith, E. A. & Schabel, S. I. Evaluation and management of scleroderma lung disease using bronchoalveolar lavage. Am. J. Med. 88, 470–476 (1990).
Bombardieri, S., Medsger, T. A. Jr., Silman, A. J. & Valentini, G. The assessment of the patient with systemic sclerosis. Introduction. Clin. Exp. Rheumatol. 21, S2–S4 (2003).
Clements, P. J. et al. Skin thickness score in systemic sclerosis: An assessment of interobserver variability in 3 independent studies. J. Rheumatol. 20, 1892–1896 (1993).
Valentini, G., Silman, A. J. & Veale, D. Assessment of disease activity. Clin. Exp. Rheumatol. 21, S39-41 (2003).